首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dosimetry-radiometry system has been developed at the Space Research Institute of the Bulgarian Academy of Science to measure the fluxes and dose rates on the flight of the second Bulgarian cosmonaut. The dosimetry system is designed for monitoring the different space radiations, such as solar cosmic rays, galactic cosmic rays and trapped particles in the earth radiation belts. The system consists of a battery operated small size detector unit and a "read-write" and telemetry microcomputer unit. The sensitivity of the instrument (3.67 x 10(-8) rad/pulse) permits high resolution measurements of the flux and dose rate along the track of the Mir space station. We report our initial results for the period of the flight between the 7th and 17th June 1988.  相似文献   

2.
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.  相似文献   

3.
This paper presents a new concept of radiation hazard assessment for spacecraft crew members during long term space missions on the basis of a generalized dosimetric function. This new dosimetric function enables a complicated nature of space radiation exposure to be reduced to the conditions of a standard irradiation. It can be obtained on the basis of mean-tissue equivalent dose values calculated for each space radiation source and transmission coefficients describing the influence of the complex spatial and temporal distribution of the absorbed dose in the cosmonaut's body on the radiobiological effects. The combination of cosmic ionizing radiation with other non-radiation nature factors in flight can also be accounted for. In terms of the generalized dose, it is possible to assess the nature and extent of lowering a crew working capacity, as well as radiation risk, both during a flight and post flight period.  相似文献   

4.
The second flight of the International Microgravity Laboratory (IML-2) on Space Shuttle flight STS-65 provided a unique opportunity for the intercomparison of a wide variety of radiation measurement techniques. Although this was not a coordinated or planned campaign, by sheer chance, a number of space radiation experiments from several countries were flown on this mission. There were active radiation measuring instruments from Japan and US, and passive detectors from US, Russia, Japan, and Germany. These detectors were distributed throughout the Space Shuttle volume: payload bay, middeck, flight deck, and Spacelab. STS-65 was launched on July 8, 1994, in a 28.45 degrees x 306 km orbit for a duration of 14 d 17 hr and 55 min. The crew doses varied from 0.935 mGy to 1.235 mGy. A factor of two variation was observed between various passive detectors mounted inside the habitable Shuttle volume. There is reasonable agreement between the galactic cosmic ray dose, dose equivalent and LET spectra measured by the tissue equivalent proportional counter flown in the payload bay with model calculations. There are significant differences in the measurements of LET spectra measured by different groups. The neutron spectrum in the 1-20 MeV region was measured. Using fluence-dose conversion factors, the neutron dose and dose equivalent rates were 11 +/- 2.7 microGy/day and 95 +/- 23.5 microSv/day respectively. The average east-west asymmetry of trapped proton (>3OMeV) and (>60 MeV) dose rate was 3.3 and 1.9 respectively.  相似文献   

5.
To determine the range of the threshold acceleration (a-threshold) for the gravitropic stimulation of Lepidium sativum L. roots and hypocotyls, experiments were performed on a centrifuge-clinostat with two-orthogonal axes. The rotation rate of the clinostat was 4 rpm (< or = 1.8 x 10(-4) g), while that of the centrifuge was from 3 to 17 rpm (3 x 10(-3) to 10(-1) g). The gravitropic response was determined: (i) after growth of roots and hypocotyls in their normal vertical position and subsequent gravitropic stimulation for 3 h by accelerations of 4 x 10(-3) to 10(-1) g, and (ii) after continuous stimulation in the lateral direction by centripetal accelerations of 4 x 10(-3) to 10(-1) g. The a-threshold was defined by an extrapolation of the regression line of R = p + rx, where x was either ln a or l/a for 3 h or a continuous stimulation, respectively. The a-threshold estimated after 3 h stimulation was equal to 2.6 x 10(-3) g for roots and 3.1 x 10(-3) g for hypocotyls. The threshold accelerations that were unable to evoke a gravitropic response even with continuous stimulation of cress roots and hypocotyls were approximately 3.1 x 10(-3) g and 3.6 x 10(-3) g, respectively. Increasing the stimulation acceleration up to 4.1 x 10(-3) g led to a statistically confirmed gravitropic response of a definite proportion of both the root and hypocotyl populations. In the experiments where acceleration and stimulation time were variable, the threshold dose (D-threshold) for roots was determined to be about 14 to 22 g x s, depending on the stimulation duration and the range of accelerations. The kinetics of gravitropic response at a near-threshold acceleration (4 x 10(-3) to 1.9 x 10(-2) g) differed from that at 1 g (horizontal stimulation). At low forces, the maximal response dependent on the magnitude of acceleration could not be enhanced by increasing the stimulation time up to at least 210 min.  相似文献   

6.
Composition and physical properties of starch in microgravity-grown plants.   总被引:1,自引:0,他引:1  
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity.  相似文献   

7.
This paper presents results of calculations of total radiation risk for cosmonauts over their lifetimes and assessments of possible shortening of life expectancy on the basis of generalized doses calculated for cosmonauts after a long term interplanetary and orbital space missions on "MIR" station and International Space Station with the use of mathematical expressions coming from a model of change mortality rate of mammals after irradiation. Tumor risk assessments for cosmonauts over lifetime after flights are also given. Dependences of the delayed radiation consequences mentioned above on flight duration, spacecraft shielding thicknesses, solar activity and cosmonauts' age are analyzed.  相似文献   

8.
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.  相似文献   

9.
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.  相似文献   

10.
An experiment involving active detection of space radiation was carried out in the Space Research Institute (SRI) of Bulgarian Academy of Sciences, in preparation of the flight of the second Bulgarian cosmonaut. The radiations that would be encountered on the flight were modelled including solar and galactic cosmic rays and the particle radiation in the Earth's radiation belts. The dose rate was calculated for these different radiations behind the shielding of the space station. The variations in dose rates over the period of the flight were calculated and compared with measurements made during the orbit of the Mir Space Station. The calculated and measured dose rates agreed within 15-35%.  相似文献   

11.
  总被引:1,自引:1,他引:0  
提高驾驶员在复杂气象环境和系统故障等条件下的情景感知能力是保障飞行安全的有力措施。基于人-机-环动力学仿真,综合计算操纵指令下预测时间段内多个飞行安全参数风险变化趋势,通过飞行安全参数风险度的叠加,得到该飞行情形下的飞行安全谱和飞行风险概率。通过并行仿真计算整个操纵空间内的飞行风险拓扑云图,构建飞行安全操纵空间,引导驾驶员正确操纵。分析了结冰环境下和舵面卡阻故障模式下的飞行安全操纵空间、事故机理和主要敏感参数。仿真结果表明,外部环境突变或突发系统故障可导致飞行安全操纵空间缩减甚至畸变。飞行安全操纵空间的提出可为驾驶员在复杂条件下的安全操纵提供直观全面的参考,提高驾驶员的情景感知能力,也可为事故演化提供可视化的分析方法。  相似文献   

12.
The genetic risks associated with manned space flight are judged to be of little significance to the general population. The risks may be significant to the irradiated individual, particularly if one focuses attention on the incidence of dominant and chromosomal mutations that are expressed in the first generation offspring. Even so, the risk is not increased to a great extent by the low linear energy transfer (LET) component of the space radiations. It is the presumed high LET component, neutrons especially, that would make the major contribution to the risk, because the relative biological effectiveness (RBE) values for this component, relative to low dose-rate photon irradiation, are between 10 and 40, depending upon the particular genetic effect and dose-rate comparison. The appropriate RBE value would probably be 20 or greater, so that even small neutron doses become magnified in their contribution. Under the assumed condition of protracted exposure to 8 rads of low LET radiation and 2 rads of high LET radiation, or from 48 to 88 rem, the individual's risk of transmitting a new dominant mutation that will be expressed in his immediate offspring is estimated to increase by at least 4% and as much as about 40%. The HZE-particle component is not expected to make a significant contribution to the total risk.  相似文献   

13.
Spores of different strains of Bacillus subtilis and the Escherichia coli plasmid pUC19 were exposed to selected conditions of space (space vacuum and/or defined wavebands and intensities of solar ultraviolet radiation) in the experiment ER 161 "Exobiological Unit" of the Exobiology Radiation Assembly (ERA) on board of the European Retrievable Carrier (EURECA). After the approximately 11 months lasting mission, their responses were studied in terms of survival, mutagenesis in the his (B. subtilis) or lac locus (pUC19), induction of DNA strand breaks, efficiency of DNA repair systems, and the role of external protective agents. The data were compared with those of a simultaneously running ground control experiment. The survival of spores treated with the vacuum of space, however shielded against solar radiation, is substantially increased, if they are exposed in multilayers and/or in the presence of glucose as protective, whereas all spores in "artificial meteorites", i.e. embedded in clays or simulated Martian soil, are killed. Vacuum treatment leads to an increase of mutation frequency in spores, but not in plasmid DNA. Extraterrestrial solar ultraviolet radiation is mutagenic, induces strand breaks in the DNA and reduces survival substantially; however, even at the highest fluences, i.e. 3 x 10(8) J m-2, a small but significant fraction of spores survives the insolation. Action spectroscopy confirms results of previous space experiments of a synergistic action of space vacuum and solar UV radiation with DNA being the critical target.  相似文献   

14.
It is shown that the RBE of the 70 GeV proton secondary radiation for the induction of single-strand break is 1.6-7.6 in Chinese hamster fibroblasts and 1.04-3.8 in limphoid cells and for the lethality of Chinese hamster cells 1.14-1.7. The RBE value increases with decreasing dose of the secondary radiation. On post-irradiation incubation of mammalian cells at 37 degrees C, single-strand breaks induced by the secondary radiation are repaired with the sane time course as those induced by gamma-rays. In our earlier works we have made an attempt to estimate the biological efficiency of radiation generated by the 70 GeV protons on bacteria, phage T4 and Vicia faba beans. The obtained values of the relative biological efficiency (RBE) of this radiation varied between 1.4 and 5.5, depending on the object, criterion of estimation, times of registration and other experimental conditions. The aim of the present work is to estimate the biological efficiency of synchrotron radiation by its effect on mammalian cells.  相似文献   

15.
航天员受银河宇宙线辐射的剂量计算   总被引:1,自引:0,他引:1  
在近地空间(LEO)和深空探测中,航天员遭受的辐射风险主要来自于银河宇宙线(GCR)照射.银河宇宙线的辐射剂量是航天员辐射风险评价的基础.国际放射防护委员会(ICRP)于2013年提出了新的航天员空间辐射剂量估算方法,以更准确给出空间重离子辐射的剂量.基于此方法,开发了宇宙线粒子在物质中输运的蒙特卡罗程序,并在程序中实现用中国成年男性人体数字模型来仿真航天员.采用该程序计算了粒子(Z=1~92)各向同性照射航天员时器官的通量-器官剂量转换因数,并估算出航天员在近地轨道空间受银河宇宙线辐射的剂量.  相似文献   

16.
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.  相似文献   

17.
The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR spacestation during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.  相似文献   

18.
Described is the Liulin-5 active dosimetric telescope designed for measurement of the space radiation dose depth-distribution in a human phantom on the Russian Segment of the International Space Station (ISS). The Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The MATROSHKA-R project is aimed to study the depth-dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is a long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different compartments. Energy deposition spectra, linear energy transfer spectra, and flux and dose rates for charged particles will be measured simultaneously with near real time resolution at different depths of the phantom by means of three silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, which verify the models of radiation environment in low Earth orbit. Presented are the test results of the prototype unit. Liulin-5 will be flown on the ISS in the year 2003.  相似文献   

19.
Stable carbon isotope measurements of the organic matter associated with the carbonate globules and the bulk matrix material in the ALH84001 Martian meteorite indicate that two distinct sources are present in the sample. The delta 13C values for the organic matter associated with the carbonate globules averaged -26% and is attributed to terrestrial contamination. In contrast, the delta 13C values for the organic matter associated with the bulk matrix material yielded a value of -15%. The only common carbon sources on the Earth that yield similar delta 13C values, other then some diagenetically altered marine carbonates, are C4 plants. A delta 13C value of -15%, on the other hand, is consistent with a kerogen-like component, the most ubiquitous form of organic matter found in carbonaceous chondrites such as the Murchison meteorite. Examination of the carbonate globules and bulk matrix material using laser desorption mass spectrometry (LDMS) indicates the presence of a high molecular weight organic component which appears to be extraterrestrial in origin, possibly derived from the exogenous delivery of meteoritic or cometary debris to the surface of Mars.  相似文献   

20.
Based on irradiation with 45 MeV/u N and B ions and with Co-60 gamma rays, cellular parameters of Katz's track structure model have been fitted for the survival of V79-379A Chinese hamster lung fibroblasts. Cellular parameters representing neoplastic transformations in C3H10T/1/2 cells after their irradiation with heavy ion beams, taken from earlier work, were also used to model the radiation hazard in deep space, following the system for evaluating, summing and reporting occupational exposures proposed in 1967 by a subcommittee of NCRP. We have performed model calculations of the number of transformations in surviving cells, after a given fluence of heavy charged particles of initial energy 500 MeV/u, penetrating thick layers of cells. We take the product of cell transformation and survival probabilities, calculated along the path lengths of charged particles using cellular survival and transformation parameters, to represent a quantity proportional to the "radiation risk factor" discussed in the NCRP document. The "synergistic" effect of simultaneous charged particle transfers is accounted for by the "track overlap" mode inherent in the model of Katz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号