首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
IMM estimator with out-of-sequence measurements   总被引:3,自引:0,他引:3  
In multisensor tracking systems that operate in a centralized information processing architecture, measurements from the same target obtained by different sensors can arrive at the processing center out of sequence. In order to avoid either a delay in the output or the need for reordering and reprocessing an entire sequence of measurements, such measurements have to be processed as out-of-sequence measurements (OOSMs). Recent work developed procedures for incorporating OOSMs into a Kalman filter (KF). Since the state of the art tracker for real (maneuvering) targets is the interacting multiple model (IMM) estimator, the algorithm for incorporating OOSMs into an IMM estimator is presented here. Both data association and estimation are considered. Simulation results are presented for two realistic problems using measurements from two airborne GMTI sensors. It is shown that the proposed algorithm for incorporating OOSMs into an IMM estimator yields practically the same performance as the reordering and in-sequence reprocessing of the measurements. Also, it is shown how the range rate from a GMTI sensor can be used as a linear velocity measurement in the tracking filter.  相似文献   

2.
In this paper we present the design of a Variable Structure Interacting Multiple Model (VS-IMM) estimator for tracking groups of ground targets on constrained paths using Moving Target Indicator (MTI) reports obtained from an airborne sensor. The targets are moving along a highway, with varying obscuration due to changing terrain conditions. In addition, the roads can branch, merge or cross-the scenario represents target convoys along a realistic road network with junctions, changing terrains, etc. Some of the targets may also move in an open field. This constrained motion estimation problem is handled using an IMM estimator with varying mode sets depending on the topography, The number of models in the IMM estimator, their types and their parameters are modified adaptively, in real-time, based on the estimated position of the target and the corresponding road/visibility conditions. This topography-based variable structure mechanism eliminates the need for carrying all the possible models throughout the entire tracking period as in the standard IMM estimator, significantly improving performance and reducing computational load. Data association is handled using an assignment algorithm. The estimator is designed to handle a very large number of ground targets simultaneously. A simulated scenario consisting of over one hundred targets is used to illustrate the selection of design parameters and the operation of the tracker. Performance measures are presented to contrast the benefits of the VS-IMM estimator over the Kalman filter and the standard IMM estimator, The VS-IMM estimator is then combined with multidimensional assignment to gain “time-depth.” The additional benefit of using higher dimensional assignment algorithms for data association is also evaluated  相似文献   

3.
Multisensor tracking of a maneuvering target in clutter   总被引:1,自引:0,他引:1  
An algorithm is presented for tracking a highly maneuvering target using two different sensors, a radar and an infrared sensor, assumed to operate in a cluttered environment. The nonparametric probabilist data association filter (PDAF) has been adapted for the multisensor (MS) case, yielding the MSPDAF. To accommodate the fact that the target can be highly maneuvering, the interacting multiple model (IMM) approach is used. The results of single-model-based filters and of the IMM/MSPDAF algorithm with two and three models are presented and compared. The IMM has been shown to be able to adapt itself to the type of motion exhibited by the target in the presence of heavy clutter. It yielded high accuracy in the absence of acceleration and kept the target in track during the high acceleration periods  相似文献   

4.
基于傅里叶变换的航迹对准关联算法   总被引:7,自引:2,他引:5  
何友  宋强  熊伟 《航空学报》2010,31(2):356-362
研究了在组网雷达存在系统误差情况下的目标航迹关联问题,理论分析了雷达系统误差对目标航迹的影响,并将该影响表示为目标航迹的旋转和平移量。在此基础上,提出了一种基于傅里叶变换的系统误差配准前航迹对准关联算法,该算法将组网雷达的航迹数据看做为一种整体信息,采用傅里叶变换理论来估计和补偿组网雷达目标航迹数据到融合中心航迹数据的相对旋转量和平移量,将雷达网中雷达上报的目标航迹数据对准到融合中心,从而不依赖于估计雷达网系统误差,实现了误差配准前的航迹准确关联,能够为后端的系统误差配准提供可靠的关联目标航迹数据。  相似文献   

5.
Linear Kalman filters, using fewer states than required to completely specify target maneuvers, are commonly used to track maneuvering targets. Such reduced state Kalman filters have also been used as component filters of interacting multiple model (IMM) estimators. These reduced state Kalman filters rely on white plant noise to compensate for not knowing the maneuver - they are not necessarily optimal reduced state estimators nor are they necessarily consistent. To be consistent, the state estimation and innovation covariances must include the actual errors during a maneuver. Blair and Bar-Shalom have shown an example where a linear Kalman filter used as an inconsistent reduced state estimator paradoxically yields worse errors with multisensor tracking than with single sensor tracking. We provide examples showing multiple facets of Kalman filter and IMM inconsistency when tracking maneuvering targets with single and multiple sensors. An optimal reduced state estimator derived in previous work resolves the consistency issues of linear Kalman filters and IMM estimators.  相似文献   

6.
Sincephasedarayradarcanalocatetheradarresourcesflexibly,ithasthepotentialtofurtherimprovetheperformanceoftrackingmaneuveringt...  相似文献   

7.
Interacting multiple model methods in target tracking: a survey   总被引:4,自引:0,他引:4  
The Interacting Multiple Model (IMM) estimator is a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation schemes. The main feature of this algorithm is its ability to estimate the state of a dynamic system with several behavior modes which can “switch” from one to another. In particular, the IMM estimator can be a self-adjusting variable-bandwidth filter, which makes it natural for tracking maneuvering targets. The importance of this approach is that it is the best compromise available currently-between complexity and performance: its computational requirements are nearly linear in the size of the problem (number of models) while its performance is almost the same as that of an algorithm with quadratic complexity. The objective of this work is to survey and put in perspective the existing IMM methods for target tracking problems. Special attention is given to the assumptions underlying each algorithm and its applicability to various situations  相似文献   

8.
基于遗传算法的多部测速雷达布站优化研究   总被引:1,自引:0,他引:1  
通过部署于不同地点的多部无源多普勒测速雷达,可以对有辐射信号源的机动飞行目标进行跟踪测量,并且可以对目标位置和速度信息进行最佳估计。本文探讨了遗传算法在测速雷达布站优化中的使用方法,分析了误差传播矩阵,建立了简易目标函数,利用遗传算法对信标体制下的多普勒测速单站的布站几何进行了优化。  相似文献   

9.
We present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (electronically scanned array (ESA) radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done so as to maximize the “time-depth” in addition to “sensor-width” for the number S of lists handled by the assignment algorithm. The standard procedure, which associates measurements from the most recently arrived S-1 frames to established tracks, can have, in the case of S sensors, a time-depth of zero. A new technique, which guarantees maximum effectiveness for an S-dimensional data association (S⩾3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance, and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data for a large scale air-to-ground target tracking problem  相似文献   

10.
The two-stage Kalman estimator has been studied for state estimation in the presence of random bias and applied to the tracking of maneuvering targets by treating the target acceleration as a bias vector. Since the target acceleration is considered a bias, the first stage contains a constant velocity motion model and estimates the target position and velocity, while the second stage estimates the target acceleration when a maneuver is detected, the acceleration estimate is used to correct the estimates of the first stage. The interacting acceleration compensation (IAC) algorithm is proposed to overcome the requirement of explicit maneuver detection of the two-stage estimator. The IAC algorithm is viewed as a two-stage estimator having two acceleration models: the zero acceleration of the constant velocity model and a constant acceleration model. The interacting multiple model (IMM) algorithm is used to compute the acceleration estimates that compensate the estimate of the constant velocity filter. Simulation results indicate the tracking performance of the IAC algorithm approaches that of a comparative IMM algorithm while requiring approximately 50% of the computations  相似文献   

11.
The probabilistic multiple hypothesis tracker (PMHT) uses the expectation-maximization (EM) algorithm to solve the measurement-origin uncertainty problem. Here, we explore some of its variants for maneuvering targets and in particular discuss the multiple model PMHT. We apply this PMHT to the six "typical" tracking scenarios given in the second benchmark problem from W. D. Blair and G. A. Watson (1998). The manner in which the PMHT is used to track the targets and to manage radar allocation is discussed, and the results compared with those of the interacting multiple model probabilistic data association filter (IMM/PDAF) and IMM/MHT (multiple hypothesis tracker). The PMHT works well: its performance lies between those of the IMM/PDAF and IMM/MHT both in terms of tracking performance and computational load.  相似文献   

12.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

13.
We present a new batch-recursive estimator for tracking maneuvering targets from bearings-only measurements in clutter (i.e., for low signal-to-noise ratio (SNR) targets), Standard recursive estimators like the extended Kalman Iter (EKF) suffer from poor convergence and erratic behavior due to the lack of initial target range information, On the other hand, batch estimators cannot handle target maneuvers. In order to rectify these shortcomings, we combine the batch maximum likelihood-probabilistic data association (ML-PDA) estimator with the recursive interacting multiple model (IMM) estimator with probabilistic data association (PDA) to result in better track initialization as well as track maintenance results in the presence of clutter. It is also demonstrated how the batch-recursive estimator can be used for adaptive decisions for ownship maneuvers based on the target state estimation to enhance the target observability. The tracking algorithm is shown to be effective for targets with 8 dB SNR  相似文献   

14.
15.
In this work we present a new track segment association technique to improve track continuity in large-scale target tracking problems where track breakages are common. A representative airborne early warning (AEW) system scenario, which is a challenging environment due to highly maneuvering targets, close target formations, large measurement errors, long sampling intervals, and low detection probabilities, provides the motivation for the new technique. Previously, a tracker using the interacting multiple model (IMM) estimator combined with an assignment algorithm was shown to be more reliable than a conventional Kalman filter based approach in tracking similar targets but it still yielded track breakages due to the difficult environment. In order to combine the broken track segments and improve track continuity, a new track segment association algorithm using a discrete optimization approach is presented. Simulation results show that track segment association yields significant improvements in mean track life as well as in position, speed, and course rms errors. Also presented is a modified one-point initialization technique with range rate measurements, which are typically ignored by other initialization techniques, and a fine-step IMM estimator, which improves performance in the presence of long revisit intervals. Another aspect that is investigated is the benefit of "deep" (multiframe or N-dimensional, with N > 2) association, which is shown to yield significant benefit in reducing the number of false tracks.  相似文献   

16.
Estimating the Doppler centroid of SAR data   总被引:5,自引:0,他引:5  
After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found that the nonlinear SDE algorithm, which estimates the Doppler-shift on the basis of data signs alone, gives superior performance  相似文献   

17.
Application of the Kalman-Levy Filter for Tracking Maneuvering Targets   总被引:3,自引:0,他引:3  
Among target tracking algorithms using Kalman filtering-like approaches, the standard assumptions are Gaussian process and measurement noise models. Based on these assumptions, the Kalman filter is widely used in single or multiple filter versions (e.g., in an interacting multiple model (IMM) estimator). The oversimplification resulting from the above assumptions can cause degradation in tracking performance. In this paper we explore the application of Kalman-Levy filter to handle maneuvering targets. This filter assumes a heavy-tailed noise distribution known as the Levy distribution. Due to the heavy-tailed nature of the assumed distribution, the Kalman-Levy filter is more effective in the presence of large errors that can occur, for example, due to the onset of acceleration or deceleration. However, for the same reason, the performance of the Kalman-Levy filter in the nonmaneuvering portion of track is worse than that of a Kalman filter. For this reason, an IMM with one Kalman and one Kalman-Levy module is developed here. Also, the superiority of the IMM with Kalman-Levy module over only Kalman-filter-based IMM for realistic maneuvers is shown by simulation results.  相似文献   

18.
The objective of this primarily tutorial item is to describe a general model for the observable data and the appropriate data processing involved in sensing rigid target fields with coherent radars. Any number of radars may be involved, and the scene and each radar may be in any kind of motion-with no restrictions on motion through resolution cells during the coherent processing time of the radars. The motions are assumed to be known. To some extent motion parameters can be estimated from the radar data, e.g., by adaptive parameter adjustments in the data processing; however, this subject is beyond the scope of this discussion. In large measure, the analysis in this item highlights the central conceptual result obtained by J.L. Walker as described in [1] -a major work in radar theory.  相似文献   

19.
In this paper the acquisition of a low observable (LO) incoming tactical ballistic missile using the measurements from a surface based electronically scanned array (ESA) radar is presented. We present a batch maximum likelihood (ML) estimator to acquire the missile while it is exo-atmospheric. The proposed estimator, which combines ML estimation with the probabilistic data association (PDA) approach resulting in the ML-PDA algorithm to handle false alarms, also uses target features. The use of features facilitates target acquisition under low signal-to-noise ratio (SNR) conditions. Typically, ESA radars operate at 13-20 dB, whereas the new estimator is shown to be effective even at 4 dB SNR (in a resolution cell, at the end of the signal processing chain) for a Swerling III fluctuating target, which represents a significant counter-stealth capability. That is, this algorithm acts as an effective “power multiplier” for the radar by about an order of magnitude. An approximate Cramer-Rao lower bound (CRLB), quantifying the attainable estimation accuracies and shown to be met by the proposed estimator, is derived as well  相似文献   

20.
Multifrequency Imaging of Radar Turntable Data   总被引:1,自引:0,他引:1  
In recent years synthetic-aperture radars (SAR) have proven to be very useful two-dimensional imaging tools in various fields. Based on the synthetic-aperture concepts, different imaging modes are possibe with various operating characteristics. We describe a special case where circular-projection radar data are coherently processed to yield both azimuth and range resoultion. Experiments are performed using data obtained from the radar target scatter site (RAT SCAT) radar cross-section facility. Fairly good results are obtained which illustrate the versatility of coherent syntheticaperture processing of pulse-to-pulse high-range-resolution radar returns. A discrete multifrequency stepped and pulsed waveform is the basic transmitted signal from which range-Doppler images are generated. The RAT SCAT turntable facility allows interesting model targets to be illuminated from which radar images can then be computed. One such application of the processing is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号