首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
星载双频GPS载波相位和伪距观测量已成为低轨卫星获取精确三维位置和速度信息的主要方式. 本文以非差消电离载波相位和伪距组合作为观测量,应用简化动力学最小二乘批处理方法进行地球低轨卫星的精密定轨,并给出完整定轨流程. 采用逐段常量的经验加速度对动力学模型误差进行补偿,描述了经验加速度敏感矩阵及稀疏带状矩阵求逆的有效计算方法. 利用GRACE-A卫星GPS观测数据对定轨位置精度进行分析,结果显示,三维位置定轨精度优于5cm,经验加速度在径向、切向和法向上的补偿水平不超过40nm·s-2,大气阻力系数和辐射光压系数的估计值符合物理实际,星载接收机钟差大致呈线性并具有短周期小波动.   相似文献   

2.
Over 60% clocks on board of the GPS satellites are working longer than their designed life. Therefore realizing their stabilities in a long time scales is essential to GPS navigation and positioning plus IGS time scale maintaining. IGS clock products from 2001 to 2010 are used to analyze the GPS satellite clock qualities such as frequency stabilities and clock noise level. We find out that for the clocks of Block IIA satellites the frequency stabilities and clock noise are 10 times worse than that of the Block IIR and IIR-M satellites. Moreover, the linear relationships between frequency stabilities and clock residuals have been deduced with an accuracy of better than 0.02 ns. Specially, it is noticed that the clock of the PRN27 is instable and the relationship between the frequency stability and residuals is at least a quadratic curve. Therefore, we suggested that GPS satellite clocks should be weighted by their quality levels in application, and the observations of the Block IIA should not be used for real-time positioning which required precision better than one meter.  相似文献   

3.
Obtaining reliable GNSS uncalibrated phase delay (UPD) or integer clock products is the key to achieving ambiguity-fixed solutions for real-time (RT) precise point positioning (PPP) users. However, due to the influence of RT orbit errors, the quality of UPD/integer clock products estimated with a globally distributed GNSS network is difficult to ensure, thereby affecting the ambiguity resolution (AR) performance of RT-PPP. In this contribution, by fully utilising the consistency of orbital errors in regional GNSS network coverage areas, a method is proposed for estimating regional integer clock products to compensate for RT orbit errors. Based on Centre National d’Études Spatiales (CNES) RT precise products, the regional GPS/BDS integer clock was estimated with a CORS network in the west of China. Results showed that the difference between the estimated regional and CNES global integer clock/bias products was generally less than 5 cm for GPS, whereas clock differences of greater than 10 cm were observed for BDS due to the large RT orbit error. Compared with PPP using global integer clock/bias products, the AR performance of PPP using the regional integer clock was obviously improved for four rover stations. For single GPS, the horizontal and vertical accuracies of ambiguity-fixed PPP solutions were improved by 56.2% and 45.3% on average, respectively, whereas improvements of 67.5% and 50.5% in the horizontal and vertical directions, respectively, were observed for the combined GPS/BDS situation. Based on a regional integer clock, the RMS error of a kinematic ambiguity-fixed PPP solution in the horizontal direction could reach 0.5 cm. In terms of initialisation time, the average time to first fix (TTFF) in combined GPS/BDS PPP was shortened from 18.2 min to 12.7 min. In view of the high AR performance realised with the use of regional integer clocks, this method can be applied to scenarios that require high positioning accuracy, such as deformation monitoring.  相似文献   

4.
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.  相似文献   

5.
对目前低轨卫星实时定位的方法进行了研究,现在通常采用GPS定位,使用广播星历和普通晶振,实时定位精度一般在10m以内,不能满足高精度实时定位的需求。IGS组织在全球范围内对GPS跟踪分析,生成精密星历、精密钟差产品、按SSR格式的广播星历和钟差修正产品并在网上发布。对这些IGS产品进行了调查,提出在现有测控支持情况下,可以通过高密度上注SSR信息流实现在轨高精度定位。以某型号低轨微小卫星在轨导航增强载荷为应用背景,用IGS03产品中的1057和1058数据对双频GPS接收机的星历和钟差进行修正,采用递推最小二乘估计和LAMDA模糊度固定过对载波相位和伪距信息进行处理,在短时间内获得亚米级定位结果。  相似文献   

6.
In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.  相似文献   

7.
轨道器精密定轨与着陆器的精确定位在深空探测任务中具有非常重要的科学意义。对一种月球与火星探测多程微波测量链路的定轨定位能力进行了初步仿真分析,推导了这种多程微波测量链路的测量模型,分析了该模型的优势。模拟仿真分析结果表明,此测量跟踪模式的数据具有提升轨道精度的潜在能力,并且同时求得着陆器的位置。定量分析表明,在考虑坐标系转换误差,重力场误差,行星历表误差以及星上转发误差的情况下,模拟1 mm/s的噪声,对于月球探测器来说,轨道器的定轨精度可达几米,着陆器的定位精度有望达到分米量级;对于火星探测器来说,轨道器的定轨精度可达到数10 m,着陆器的定位精度可达到几米。  相似文献   

8.
Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.  相似文献   

9.
The state-space representation (SSR) product of satellite orbit and clock is one of the most essential corrections for real-time precise point positioning (RTPPP). When it comes to PPP ambiguity resolution (PPP-AR), the fractional cycle bias (FCB) matters. The Japan Aerospace Exploration Agency (JAXA) has developed a multi-GNSS (i.e., global navigation satellite system) advanced demonstration tool for orbit and clock analysis (MADOCA), providing free and precise orbit and clock products. Because of the shortage of relevant studies on performance evaluation, this paper focuses on the performance assessment of RTPPP and PPP-AR by real-time and offline MADOCA products. To begin with, the real-time MADOCA products are evaluated by comparing orbit and clock with JAXA final products, which gives an objective impression of the correction. Second, PPP tests in static and simulated kinematic mode are conducted to further verify the quality of real-time MADOCA products. Finally, the offline MADOCA products are assessed by PPP and PPP-AR comparisons. The results are as follows: (1) Orbit comparisons produced an average error of about 0.04–0.13 m for the global positioning system (GPS), 0.14–0.16 m for the global navigation satellite system (GLONASS), and 0.07–0.08 m for the quasi-zenith satellite system (QZSS). The G15 satellite had the most accurate orbit, with a difference of 0.04 m between the JAXA orbit products and MADOCA’s counterpart, while the R07 satellite had the least accurate orbit with a difference of 0.16 m. Clock products had an accuracy of 0.4–1.3 ns for GPS, 1.4–1.6 ns for GLONASS, and 0.7–0.8 ns for QZSS in general. The G15 satellite had the most accurate clock with a difference of only 0.40 ns between the JAXA clock products and MADOCA products, and the R07 satellite had the least accurate clock with a difference of 1.55 ns. The orbit and clock products for GLONASS performed worse than those of GPS and QZSS. (2) After convergence, the positioning accuracy was 3.0–8.1 cm for static PPP and 8.1–13.7 cm for kinematic PPP when using multi-GNSS observations and precise orbit and clock products. The PFRR station performed the good performance both in static and kinematic mode with an accuracy of 2.99 cm and 8.08 cm, respectively, whereas the CPNM station produced the worst static performance with an error of 8.09 cm, and the ANMG station produced the worst kinematic performance with a counterpart of 13.69 cm. (3) The PPP-AR solution was superior to the PPP solution, given that, with respect to PPP, post-processing PPP-AR improved the positioning accuracy and convergence time by 13–32 % (3–89 %) in GPS-only mode by 2–15 % (5–60 %) in GPS/QZSS mode. Thus, we conclude that the current MADOCA products can provide SSR corrections and FCB products with positioning accuracy at the decimeter or even centimeter level, which could meet the demands of the RTPPP and PPP-AR solutions.  相似文献   

10.
星载全球定位系统(GPS)卫星接收机在测量接收各GPS卫星信号时,可同时得到接收信号的信号强度测量辅助数据E。理论分析表明,接收信号的强度E与信号入射天线的法向夹角α强相关。如建立E与α稳定的先验模型,E就可以作为测量值,计算入射天线的角度α。在同一时刻,通过三个以上GPS卫星信号入射天线的角度α,可计算星载GPS卫星接收机接收天线的空间姿态。确定姿态的精度取决于E与α相关先验模型的稳定性。利用CHAMP卫星星载接收机在轨实测数据检验,估算的初始姿态精度为2°~3°。该方法可作为航天器故障状态下应急姿态捕获的一种辅助手段,也可为携带星载GPS而无高精度定姿要求的简易航天器提供一种新的无附加成本的定姿途径。  相似文献   

11.
Network based real-time precise point positioning system includes two stages, i.e. real-time estimation of satellite clocks based on a reference network and real-time precise point positioning thereafter. In this paper, a satellite- and epoch-differenced approach, adopted from what is introduced by Han et al. (2001), is presented for the determination of satellite clocks and for the precise point positioning. One important refinement of our approach is the implementation of the robust clock estimation. A prototype software system is developed, and data from the European Reference Frame Permanent Network on September 19, 2009 is used to evaluate the approach. Results show that our approach is 3 times and 90 times faster than the epoch-difference approach and the zero-difference approach, respectively, which demonstrates a significant improvement in the computation efficiency. The RMS of the estimated clocks is at the level of 0.1 ns (3 cm) compared to the IGS final clocks. The clocks estimates are then applied to the precise point positioning in both kinematic and static mode. In static mode, the 2-h estimated coordinates have a mean accuracy of 3.08, 5.79, 6.32 cm in the North, East and Up directions. In kinematic mode, the mean kinematic coordinates accuracy is of 4.63, 5.82, 9.20 cm.  相似文献   

12.
The gravity field model AIUB-CHAMP02S, which is based on six years of CHAMP GPS data, is presented here. The gravity field parameters were derived using a two step procedure: In a first step a kinematic trajectory of a low Earth orbiting (LEO) satellite is computed using the GPS data from the on-board receiver. In this step the orbits and clock corrections of the GPS satellites as well as the Earth rotation parameters (ERPs) are introduced as known. In the second step this kinematic orbit is represented by a gravitational force model and orbit parameters.  相似文献   

13.
The proper modeling of the satellites’ yaw-attitude is a prerequisite for high-precision Global Navigation Satellite System (GNSS) positioning and poses a particular challenge during periods when the satellite orbital planes are partially eclipsed. Whereas a lot of effort has been put in to examine the yaw-attitude control of GPS satellites that are in eclipsing orbits, hardly anything is known about the yaw-attitude behavior of eclipsing GLONASS-M satellites. However, systematic variations of the carrier phase observation residuals in the vicinity of the orbit’s noon and midnight points of up to ±27 cm indicate significant attitude-related modeling issues. In order to explore the GLONASS-M attitude laws during eclipse seasons, we have studied the evolution of the horizontal satellite antenna offset estimates during orbit noon and orbit midnight using a technique that we refer to as “reverse kinematic precise point positioning”. In this approach, we keep all relevant global geodetic parameters fixed and estimate the satellite clock and antenna phase center positions epoch-by-epoch using 30-second observation and clock data from a global multi-GNSS ground station network. The estimated horizontal antenna phase center offsets implicitly provide the spacecraft’s yaw-attitude. The insights gained from studying the yaw angle behavior have led to the development of the very first yaw-attitude model for eclipsing GLONASS-M satellites. The derived yaw-attitude model proves to be much better than the nominal yaw-attitude model commonly being used by today’s GLONASS-capable GNSS software packages as it reduces the observation residuals of eclipsing satellites down to the normal level of non-eclipsing satellites and thereby prevents a multitude of measurements from being incorrectly identified as outliers. It facilitates continuous satellite clock estimation during eclipse and improves in particular the results of kinematic precise point positioning of ground-based receivers.  相似文献   

14.
精密GPS卫星钟差的改正和应用   总被引:13,自引:2,他引:13  
分析了GPS卫生钟差的变化特性,探讨了利用GPS地面跟踪站的观测数据估算GPS卫星钟差的可行性,建立了相应的算法和软件系统,并把由地面跟踪站的实测数据估算的卫星钟差用于星载GPS定轨计算,得到优于1m的定轨精度。  相似文献   

15.
利用GPS接收机的导航信息精确确定接收机载体航天器的轨道根数.给出了为确保10 m量级的定轨精度所必需的精确坐标系变换与时间系统变换公式,提出了采用GPS接收机的导航信息与摄动运动方程式外推的组合导航方法,以保证接收机天线被短期遮挡时导航仍能正常运行.  相似文献   

16.
星载GPS几何法实时定轨有关问题的研究   总被引:2,自引:0,他引:2  
首先讨论了星载GPS几何法实时定轨的绝对定位方法和各种差分技术。由于伪距差技术能克服GPS卫星的星历误差、卫星钟误差,特别是SA误差的影响,而且实现难度不大,所以应用它来实时定轨。实测数据的处理表明,它能明显提高定轨的精度。然后分析了星载GPS所受扰动影响的情况,对应用抗差估计削弱GPS卫星信号扰动的影响进行了试验,试验的结果说明抗差估计能进一步提高星载GPS几何法定轨的精度。  相似文献   

17.
针对目前高轨GPS信号可用性差及定位精度低的特点, 对GPS/北斗组合系统的 高轨卫星定位技术进行研究, 对比分析了单GPS系统与GPS/北斗组合系统的卫 星可见性和几何精度因子. 结果表明, GPS/北斗组合系统比单GPS系统的卫星可 见性好, 且定位精度高. 同时通过提出在星载接收机上采用高精度原子钟, 可实现三星定位, 降低对接收机的技术要求.   相似文献   

18.
Processing data from Global Navigation Satellite Systems (GNSS) always requires time synchronization between transmitter and receiver clocks. Due to the limited stability of the receiver’s internal oscillator, the offset of the receiver clock with respect to the system time has to be estimated for every observation epoch or eliminated by processing differences between simultaneous observations. If, in contrast, the internal oscillator of the receiver is replaced by a stable atomic clock one can try to model the receiver clock offset, instead of estimating it on an epoch-by-epoch basis. In view of the progress made in the field of high-precision frequency standards we will investigate the technical requirements for GNSS receiver clock modeling at the carrier phase level and analyze its impact on the precision of the position estimates.  相似文献   

19.
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5–10 cm accuracy, PPP with ambiguity-fixing of 2–5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1–3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.  相似文献   

20.
Continuous and timely real-time satellite orbit and clock products are mandatory for real-time precise point positioning (RT-PPP). Real-time high-precision satellite orbit and clock products should be predicted within a short time in case of communication delay or connection breakdown in practical applications. For prediction, historical data describing the characteristics of the real-time orbit and clock can be used as the basis for performing the prediction. When historical data are scarce, it is difficult for many existing models to perform precise predictions. In this paper, a linear regression model is used to predict clock products. Seven-day GeoForschungsZentrum (GFZ) final clock products sampled at 30 s are used to analyze the characteristics of GNSS clocks. It is shown that the linear regression model can be used as the prediction model for the satellite clock products. In addition, the accuracy of the clock prediction for different satellites are analyzed using historical data with different periods (such as 2 and 10 epochs). Experimental results show that the accuracy of the clock with the linear regression prediction model using historical data with 10 epochs is 1.0 ns within 900 s. This is higher accuracy than that achieved using historical data of 2 epochs. Finally, the performance analysis for real-time kinematic precise point positioning (PPP) is provided using GFZ final clock prediction results and state space representation (SSR) clock prediction results when communication delay or connection breakdown occur. Experimental results show that the positioning accuracy without prediction is better than that with prediction in general, whether using the final clock product or the SSR clock product. For the final clock product, the positioning accuracy in the north (N), east (E), and up (U) directions is better than 10.0 cm with all visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 15.0 cm to 7.0 cm. For the SSR clock product, the positioning accuracy of N, E, and U directions is better than 12.0 cm with visible GNSS satellites with prediction. In comparison, the 3D positioning accuracy of N, E, and U directions with visible GNSS satellites whose prediction accuracy is better than 0.1 ns using historical data of 10 epochs is improved from 12.0 cm to 9.0 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号