首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

3.
Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion (Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 μmol mol−1 and 3 light intensity levels of 150, 300, 450 μmol m−2 s−1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO2, but remained unchanged with increases in light intensity. Elevated CO2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO2 for antioxidant production.  相似文献   

4.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

5.
Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol−1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.  相似文献   

6.
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m−2 s−1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m−2 s−1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m−2 s−1 to 1150 μmol m−2 s−1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.  相似文献   

7.
Aerosol optical depth (AOD) is one of the most important indicators of atmospheric pollution. It can be retrieved from satellite imagery using several established methods, such as the dark dense vegetation method and the deep blue algorithm. All of these methods require estimation of surface reflectance prior to retrieval, and are applicable to a certain pre-designated type of surface cover. Such limitations can be overcome by using a synergetic method of retrieval proposed in this study. This innovative method is based on the fact that the ratio K of surface reflectance at different angles/geometries is independent of wavelength as reported by Flowerdew and Haigh (1995). An atmospheric radiative transfer model was then established and resolved with the assistance of the ratio K obtained from two Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands acquired from the twin satellites of Terra and Aqua whose overpass is separated by three hours. This synergetic method of retrieval was tested with 20 pairs of MODIS images. The retrieved AOD was validated against the ground observed AOD at the Taihu station of the AErosol RObotic NETwork (AERONET). It is found that they are correlated with the observations at a coefficient of 0.828 at 0.47 μm and 0.921 at 0.66 μm wavelengths. The retrieved AOD has a mean relative error of 25.47% at 0.47 μm and 24.3% at 0.66 μm. Of the 20 samples, 15 and 17 fall within two standard error of the line based observed AOD data on the ground at the 0.47 μm and 0.66 μm, respectively. These results indicate that this synergetic method can be used to reliably retrieve AOD from the twin satellites MODIS images, namely Terra and Aqua. It is not necessary to determine surface reflectance first.  相似文献   

8.
Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots – 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0–400 μmol m−2 s−1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants – lettuce and radicchio were carried out at 400 μmol m−2 s−1 PPFD (high light – HL) and 220 μmol m−2 s−1 PPFD (low light – LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H2O2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H2O2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.  相似文献   

9.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

10.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   

11.
An experiment utilizing cowpeas (Vigna unguiculata L.), pinto beans (Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat (Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m−2 s−1, 45 mol m−2 day−1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m−2 (5.42 g m−2 day−1) and 579.5 dry seed m−2 (9.20 g m−2 day−1) at planted densities of 32.5 plants m−2 and 37.5 plants m−2, respectively. Cowpea yielded 187.9 g dry seed m−2 (2.21 g m−2 day−1) and 348.8 dry seed m−2 (4.10 g m−2 day−1) at planted densities of 20.8 plants m−2 and 27.7 plants m−2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300–3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO2 was injected 27 times during days 29–71 to replenish CO2 used by the crop during photosynthesis. Temperature regime was 24–28 °C day/deg 20–24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.  相似文献   

12.
This paper discusses the ability of the International Reference Ionosphere IRI-2007 storm time model to predict foF2 ionospheric parameter during geomagnetic storm periods. Experimental data (based on availability) from two low latitude stations: Vanimo (geographic coordinates, 2.7 °S, 141.3 °E, magnetic coordinates, 12.3 °S, 212.50 °E) and Darwin (geographic coordinates, 12.45 °S, 130.95 °E, magnetic coordinates, 22.9 °S, 202.7 °E) during nine storms that occurred in 2000 (Rz12 = 119), 2001(Rz12 = 111) and 2003 (Rz12 = 64) are compared with those obtained by the IRI-2007 storm model. The results obtained show that the percentage deviation between the experimental and IRI predicted foF2 values during these storm periods is as high as 100% during the main and recovery phases. Based on the values of “relative deviation module mean” (RDMM) obtained (i.e. between 0.08 and 0.60), it is observed that there is a reasonable to poor agreement between measured foF2 values and the IRI-storm model prediction values during main and recovery phases of the storms under investigation. As a result, in addition to other studies that have been carried out from different sectors, more studies are required to be carried out. This will enable IRI community to improve on the present performance of the model. In general the IRI-storm model predictions follow normal trend of the foF2 measured values but does not reproduce well the measured values.  相似文献   

13.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   

14.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

15.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

16.
The effects of the factorial combination of two light intensities (200 and 800 μmol m−2 s−1) and two CO2 concentrations (360 and 800 ppm) were studied on the productivity and nutritional quality of spinach (Spinacia oleracea L.) grown under controlled environment. After 6 weeks within a growth chamber, spinach plants were sampled and analyzed for productivity and quality. There were no statistically significant interactions between the effects of light and CO2 for all of the variables studied, except for the nitrate and oxalic acid content of the leaves. High light and high CO2 independently one from the other, promoted spinach productivity, and the accumulation of ascorbic acid, while their interactive effect limited the accumulation of nitrate and oxalic acid in the spinach leaves. The results highlight the importance of considering the effects of the interaction among environmental variables on maximizing production and the nutritional quality of the food when cultivating and modeling the plant response in controlled environment systems such as for bioregenerative life support.  相似文献   

17.
We observed 10 active regions through their disk passage during June 25–August 25, 1988, with the Tower Vector Magnetograph (TVM) of Marshall Space Flight Center. The TVM was used in scanning mode to measure the photospheric Doppler velocities with the Line-Center-Magnetogram (LCM) technique in the spectral line of FeI 5250.2 Å. In this paper we present the result of a subset of observations obtained while the active regions were situated away from the solar limb. A wide range of magnetic complexity and associated chromospheric activity characterized these active regions. It was found that the value of zero-crossing wavelength of the integrated Stokes-V profile of two opposite magnetic polarities were different, corresponding to Doppler velocities ranging from ∼100 m s−1 to ∼1475 m s−1. The measurements of relative velocities between different locations, connected by magnetic flux tubes as inferred from YOHKOH soft X-ray and TRACE 171 Å Fe IX images, showed widely different values of dominant localized flows. The region of parasite polarity, which showed recurrent chromospheric activity, was blue shifted with respect to the main “magnetic element” of the same polarity. Some of them were also the sites of sheared magnetic field configuration. The magnitude of the relative velocity between the leading and following polarity is more for the active regions of higher “field asymmetry”.  相似文献   

18.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

19.
In the frame of the European Space Agency (ESA) project called “Biology and Physics in Space”, the returning satellite, Foton-M2, carried an open-to-space exposure platform outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and facilities for radiation dosimetry (RADO). One of the RADO experiments was dedicated to the detection of the primary galactic cosmic rays (GCR) and secondary neutrons by a track etch detector stack. The daily absorbed dose (D) and dose equivalent (H) were calculated from the experimental LET spectra (LET > 10 keV/μm). Under a shielding of ∼2.8 g/cm2 the averaged H was found to be 658 ± 8 μSv/d, with a quality factor (Q) of 6.2 ± 1.2. The LET spectra showed a local peak at ∼105 keV/μm suggesting that the majority of tracks were created by trapped protons as it has been predicted by calculations. The low LET dose of the cosmic radiation was determined by 4 TLD stacks, and the total dose was found to be 795 ± 14 μSv/d.  相似文献   

20.
Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O2 mg−1 h−1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号