首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The IONOSAT project (from IONOspheric SATellites) is proposed by National Space Agency of Ukraine for First European Space Program as a part of Space Weather (SW) Program. As it is commonly accepted, Space Weather means the changes of the conditions on the Sun, in solar wind, magnetosphere and ionosphere which may affect the operation and reliability of on-board and ground technological systems and threaten human health. In this chain ionosphere is specific and integral part of SW formation. Moreover, namely in the ionosphere main part of the energy absorption of Sun-activated sporadic corpuscular and radiation fluxes takes places. The excitation of ionosphere by falling fluxes produces its “luminescence” in wide frequency band – from ULF waves till ultraviolet – and by this ionosphere works as an efficient “screen” or SW indicator.A goal of the proposed project is long-term spatial–temporal monitoring of main field and plasma parameters of ionosphere with aim to further develop fundamental conceptions of solar-terrestrial connections physics, nowcasting and forecast of SW, and diagnostics of natural and technogenic hazards with the help of scientific payload installed on-board a cluster of 3 low-Earth orbit (LEO) microsatellites (tentative launch date – 2012 year).The state of the project proposal and realization plans are discussed.  相似文献   

2.
Since more than one decade ago, several institutions started to offer a large variety of Operative Space Weather (SWx) products. This is of major importance because Space Weather events can affect aviation communications, global positioning systems, grid electric power, satellite technologies, and human health in space. The scientific potential on solar-terrestrial physics in Argentina motivated the creation of an interdisciplinary Laboratory of Space Weather in Argentina. The Argentinean Space Weather Laboratory (in Spanish ‘Laboratorio Argentino de Meteorología del esPacio’, LAMP) was initiated in 2016, and it carries out daily monitoring of real-time information (space and ground-based instruments) on Space Weather. The information is synthesized on a weekly bulletin as a summary of the Space Weather conditions, and it is posted on a website (spaceweather.at.fcen.uba.ar). The analyzed information includes own data and of other centers that offer them publicly, and it is also analyzed and discussed later on, during monthly briefings. In particular, one of the regional products that is included in the briefing discussions and it was developed by LAMP in collaboration with INPE-EMBRACE, involves Vertical Total Electron Content (VTEC) maps in the Argentinean region. LAMP set up a Space Weather Laboratory in the Antarctic peninsula, in the Argentine Marambio base, where a Water Cherenkov radiation Detector (WCD) was installed during the Argentinean Antarctic campaign (January-March of 2019). This detector is the southern node of a Latin American Collaboration (LAGO, Latin American Giant Observatory), which is a network of WCDs installed throughout more than 10 Latin American countries.  相似文献   

3.
KuaFu Mission     
The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.  相似文献   

4.
空间站作为近地空间的大型平台,具备长期飞行与空间科学探索能力.随着在轨任务的不断增加,高效空间站在轨运行管理成为挑战性的难题.人工智能与航天技术的深度融合,使得空间站在轨运行逐步向智能化发展,航天器在轨运行智能化已成为必然趋势.本文对国际空间站(International Space Station,ISS)在轨智能化发展历程进行了深入分析,调研人工智能技术在其健康管理、任务规划与调度、任务操作和人机交互中的应用,以期对未来中国空间站的智能在轨运行提供启示.   相似文献   

5.
Future of Space Astronomy: A global Road Map for the next decades   总被引:1,自引:0,他引:1  
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from radio to high energy γ rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and “ground based” observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. While the present set of astronomical facilities is impressive and covers the entire electromagnetic spectrum, with complementary space and “ground based” telescopes, the situation in the next 10–20 years is of critical concern. The James Webb Space Telescope (JWST), to be launched not earlier than 2018, is the only approved future major space astronomy mission. Other major highly recommended space astronomy missions, such as the Wide-field Infrared Survey Telescope (WFIRST), the International X-ray Observatory (IXO), Large Interferometer Space Antenna (LISA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), have yet to be approved for development.  相似文献   

6.
In this paper, we present a tutorial review which was presented at the first Advanced School on Space Environment (ASSE 2004). We first describe the basics of radioastronomy definitions, and discuss radiation processes relevant to solar radio emissions like plasma emission, free–free bremsstrählung and gyromagnetic emissions. We illustrate these fundamentals by describing recent solar radio observations and the constraints they bring on different solar physical parameters. We focus on solar radio emissions from the quiet sun, active regions and during explosive events known as solar flares, and how the latter can bring quantitative informations on the particles responsible for the emission. Finally, particular attention is paid to new radio diagnostics obtained at very high frequencies in the millimeter/submillimeter range, as well as to radio emissions relevant to Space Weather studies.  相似文献   

7.
NICMOS (the Near Infrared Camera and Multi-Object Spectrometer) is a second generation scientific instrument for the Hubble Space Telescope (HST). Three cryogenic cameras with 256x256 HgCdTe arrays provide diffraction limited imaging throughout the 0.8 – 2.5 μm spectral region. Grisms in one of the cameras produces multi-object spectroscopy for all objects in the field. Coronagraphic and polarization capabilities round out the NICMOS modes of operation. Scheduled for launch on the second HST maintenance mission in 1997, NICMOS has a five year on-orbit cryogenic lifetime.  相似文献   

8.
针对多优先级天文观测卫星任务动态规划问题,分析了高优先级任务动态插入以及未知事件中断原任务规划方案执行的情况,研究了原任务规划方案相应的动态规划问题.在关于SVOM (Space multi-band Variable Object Monitor)卫星任务规划系统的研究中,针对单星机遇目标任务重规划问题,提出一种基于滚动优化策略的任务重规划求解方案.在每个滚动周期内,优先安排高优先级动态到达任务,回滚处理原方案中受未知事件和高优先级机遇目标影响的任务,或者删除原方案中受影响的任务.目标函数综合考虑了全年卫星任务规划总时长和机遇目标的规划总时长.仿真验证结果表明,本文设计方法对于快速响应高优先级机遇目标以及提高服务质量具有一定意义.   相似文献   

9.
The Space Environment Prediction Center (SEPC) of the Center for Space Science and Applied Research of the Chinese Academy of Sciences (CSSAR, CAS)took on the mission of offering the space environment parameters which may be of use to the safety of manned spacecraft. In order to complete the space environment safety guarantee mission for SZ-4 and SZ-5, SEPC improved the space environment monitoring system, database system, prediction result display system, prediction implementation system, etc. For guaranteeing the safety of the airship and cosmonaut in the first manned SZ-5, flying experiment mission,SEPC developed the software for analyzing radiation dose and early-warning software for large debris collision with SZ-5. Three months before the flights of SZ-4 and SZ-5, SEPC began to predict the safe launch period in view of the space environment, and offered timely and valid reference opinions for selecting the safety period. Especially during the mission of SZ-5, SEPC analyzed the space high-energy environment in a pre-arranged orbit and abnormal orbit andevaluated the radiation dose which cosmonauts may encounter in space. The evaluation offered an important reference for cosmonaut safety and decisionmaking in the SZ-5 mission. The calculation of the distribution of large debris and the collision risk assessment at different orbit entry times for SZ-5 provided an important base for the superior department to make flight decisions.  相似文献   

10.
The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.  相似文献   

11.
The LISA (Laser Interferometer Space Antenna) mission has been selected by the European Space Agency’s Science Programme Committee as the third large-class mission of the Cosmic Vision Programme, addressing the science theme of the Gravitational Universe. With a planned launch date in 2034, LISA will be the first ever space-borne Gravitational Wave observatory, relying on laser interferometry between three spacecraft orbiting the Sun in a triangular formation. Airbus is currently leading an industrial Phase A system study on behalf of the European Space Agency. The paper will address the astrodynamics challenges associated with the LISA constellation design, driven by tight requirements on the geometric quality metrics of the near equilateral formation.  相似文献   

12.
The Dark Matter Particle Explorer (DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science (CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5GeV-10TeV with unprecedented energy resolution (1.5% at 100GeV) in order to identify possible Dark Matter (DM) signatures. It will also measure the flux of nuclei up to above 500TeV with excellent energy resolution (40% at 800GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.   相似文献   

13.
In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.  相似文献   

14.
SMART-1 is planned to be the first Small Mission for Advanced Research in Technology of the ESA Scientific Programme Horizons 2000 for a launch at the end of 2001. The mission is dedicated to the testing of new technologies for preparing future cornerstone missions, using Solar Electrical Propulsion in Deep Space. The mission operational lifetime includes a 6–17 months cruise until a lunar orbit (300–10000 km) with 6 month operations. The SMART-1 spacecraft will be launched either on Ariane 5 as auxiliary passenger or on Eurockot. The expected launch mass is 350 kg. This allows to bring a dedicated payload with spacecraft, instrument and electric propulsion diagnostics technologies, as well as giving an opportunity for new lunar geophysical and geochemical studies, and for cruise science on the way to the Moon.  相似文献   

15.
美国高轨天基态势感知技术发展与启示   总被引:1,自引:0,他引:1  
太空是国家新边疆,太空活动是国家意志和战略意图的重要体现,是国家利益拓展的重要保障,太空安全已成为国家安全的重要组成部分.经略太空感知先行,空间态势感知是指获取和认知空间态势信息,包括空间目标监视和空间环境监测,是进一步开展空间操控和空间对抗的基础.本文首先梳理了美国空间态势感知领域相关条令的发展历程,介绍了美国高轨领域几个典型态势感知项目的实施情况,总结了其中4项关键技术,包括进入空间、自主运行、交会对接导航与控制和多角度立体成像技术.最后,本文从太空态势感知体系建立、天基自主感知系统、发展空间攻防对抗能力几个方面给出了发展建议.  相似文献   

16.
The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO–EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.  相似文献   

17.
Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone’s Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone’s orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.  相似文献   

18.
The Canadian Space Agency (CSA) has proposed a Polar Communications and Weather (PCW) satellite mission, in conjunction with other partners. The PCW will provide essential communications and meteorological services to the Canadian Arctic, as well as space weather observations of in situ ionizing radiation along the orbit. The CSA has identified three potential Highly Elliptical Orbits (HEOs) for a PCW satellite constellation, Molniya, Modified Tundra and Triple Apogee (TAP), each having specific merits, which would directly benefit the performance/longevity of a PCW spacecraft. Radiation shielding effectiveness of various materials was studied for the three PCW orbit options to determine the feasibility of employing materials other than conventional aluminium to achieve a specified spacecraft shielding level with weight savings over aluminium. It was found that, depending on the orbit-specific radiation environment characteristics, the benefits of using polyethylene based materials is significant enough (e.g., 22% in Molniya for PE at 50 krad TID) to merit further investigation.  相似文献   

19.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

20.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号