首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文依据在低速风洞所取得的测力、油流观察及旋涡测量结果,研究了前掠翼鸭式布局的鸭翼位置对气动性能的影响机理。研究表明,鸭翼位置对气动性能的影响是极为显著的。前掠翼鸭式布局大迎角性能的提高取决于鸭、主翼前缘涡的相对位置及其相互控制,也就是它们间的相互干扰。文中根据前掠及后掠鸭翼与主翼组合的实验结果,提出了采用鸭式布局时鸭、主翼应具有的平面形状及它们的相对位置。文中还对双前掠翼布局提出了一些看法。  相似文献   

2.
首先针对具有中等前缘后掠角梯形鸭翼的缺点提出双后掠鸭翼概念,然后分别对安装梯形鸭翼和双后掠鸭翼的近距耦合鸭式布局的气动性能进行数值模拟研究,分析影响双后掠鸭翼气动性能的流动机理。研究表明:在大迎角时,对于双后掠鸭翼,具有较大前缘后掠角的外翼段可以使鸭翼涡在涡核破裂后仍能形成稳定集中涡并保持较高的强度,增加鸭翼本身的失速迎角,并通过诱导作用改善机翼外翼段流场,进而提高全机大迎角性能,但在小迎角时会破坏鸭翼附着流或前缘气泡涡的发展,造成略微的升力损失。拥有较大失速迎角的双后掠鸭翼在小迎角时具有较大的可用偏度,可以增强布局的抬头控制能力。双后掠鸭翼在满足隐身约束的前提下,超声速阻力较小,具有较好的超声速性能。  相似文献   

3.
一组近耦合鸭式布局的低速气动力数值模拟   总被引:1,自引:0,他引:1  
本文使用位流中前缘离体涡模拟的数值计算方法,对于不可压流动,大迎角情况下的气流流经一组近耦合鸭式布局的流动,进行了数值模拟。分析表明,在大迎角下,在一定的主翼-鸭翼的参数选择和位置配置下,鸭式布局的升力较之单独主翼为高的主要原因是因为鸭翼有推迟主翼离体涡破碎的作用,鸭翼离体涡在主翼翼面上形成的负压以及鸭翼离体涡流动造成的主翼流场的变化,也是提高主翼升力的因素。  相似文献   

4.
前掠翼布局中鸭翼气动影响的数值模拟   总被引:2,自引:1,他引:1  
任智静  王旭  刘文法 《航空学报》2010,31(7):1318-1323
 采用三维Navier-Stokes方程和剪切应力输运(SST)湍流模型,就鸭翼不同位置和形状对前掠翼鸭式布局气动性能的影响进行数值模拟,并针对风洞试验方法难于分部件研究机翼、鸭翼以及机身各自气动特性的缺点,对布局升阻特性按部件分解研究并分析流动机理。研究结果表明:前掠翼鸭式布局气动性能(特别是在大迎角情况下)与鸭翼位置及其形状紧密相关,高位近距后掠式鸭翼可以与机翼产生更为有利的相互干扰,与无鸭翼布局相比最大升力系数提高约28.3%,最大升阻比提高约15.4%,大大地提高了前掠翼布局的纵向气动性能。该研究结果可为先进前掠翼布局飞机的预研和发展提供一定的理论参考。  相似文献   

5.
郭耀滨 《航空学报》1990,11(12):528-533
 使用能单独测量鸭翼部分气动力的“鸭翼天平”及全机气动力天平,对一可组拆的鸭式布局模型进行了干扰气动力的实验研究。发现在α<20°时鸭翼与主翼间的干扰是不利的,使升力下降。α>32°时干扰变得有利。α=32°时干扰升力可占到总升力的24%。若主翼为前掠翼,构成鸭式布局的气动特性更好。  相似文献   

6.
对40°前缘后掠角的主翼和40°前缘后掠角的鸭翼所构成的近距耦合鸭式布局简化模型进行了风洞测力、测压实验,系统研究了鸭翼展向脉冲吹气的增升效果,给出脉冲吹气频率以及脉冲宽度与布局升力之间的变化关系。测力结果表明,鸭翼展向吹气提高了该布局在大迎角时的升力,延迟了失速。测压结果表明,鸭翼展向脉冲吹气改善了中大迎角时主翼翼面流态,增加了翼面吸力峰值,延缓了涡的破裂。这说明利用鸭翼展向脉冲吹气涡控技术,可以直接改善鸭翼流场,继而间接改善主翼流场。  相似文献   

7.
振动鸭翼复杂流场测量   总被引:2,自引:1,他引:2  
研究鸭式布局飞机模型振动鸭翼对翼面涡流场的非定常干扰影响,进行了有无鸭翼、鸭翼不同偏角和不同振动频率,不同振动平均偏角及不同模型攻角下的主翼面涡流场静动态流动显示和翼面及立尾上压力分布测量。分析上述参数对主翼涡大小和强度、主翼涡位置和破散特性,压力分布特性的影响及其造成该现象的上下洗效应,涡系干扰和动态迟滞特性等复杂流动机理。  相似文献   

8.
鸭翼-前掠翼气动布局纵向气动特性实验研究   总被引:6,自引:0,他引:6  
前掠翼布局由于其潜在的优势,在未来战斗机的研制中将占有日益重要的地位.本实验通过可变前掠翼和鸭式前翼布局的风洞测力实验,重点分析比较了平板机翼在不同掠角下的纵向气动性能以及鸭翼的影响.实验结果表明,前掠翼在大迎角时能有效提高模型的升力系数,小迎角时其升阻比也略优于后掠翼.前掠翼布局能有效推迟失速,具有良好的失速特性;前掠角较大时,升力系数曲线在失速迎角附近有一个升力系数的"平台",该布局具有"缓失速"特性.距离主机翼较远的鸭式前翼(模型M2)在主机翼前掠和后掠情况下,均可改善整体布局的失速特性,增大失速迎角,增强前掠翼布局缓失速的特点.近距耦合鸭翼(模型M3)显著提高了模型在大迎角下的升力系数.另外,主翼前掠和鸭式前翼布局飞行器具有较好的机动性.  相似文献   

9.
本文介绍一种计算中等攻角、中等侧滑角情况下正常式或鸭式布局的战术弹纵、横向气动力特性的方法。它是一种数值计算与工程计算相结合的方法。位流气动力通过求解线性偏微分方程获得,粘性分离产生的非线性气动力通过对一系列脱体涡的计算获得。方法中考虑了翼面与尾面间近距干扰和远距干扰的影响。本方法可用于计算来流马赫数为0到3.5左右、攻角和侧滑角为0°到20°左右、正常式或鸭式布局的战术弹纵、横向气动力系数。计算结果与实验数据比较,有良好的一致性。  相似文献   

10.
结合鸭式布局和机翼展向吹气的优点,采用鸭翼展向零质量射流间接涡控技术提高战斗机大迎角和过失速机动性能。其主要利用鸭翼涡与主翼涡之间的有利干扰,零质量射流直接增强鸭翼涡,同时间接增强主翼涡。本文利用低速风洞测力测压实验,研究展向零质量射流对近耦合鸭式布局增升影响规律。在不同雷诺数下,通过改变零质量射流的频率来揭示零质量射流与鸭式布局气动力之间的关系。本研究为新一代战斗机研制提供一定的技术储备。  相似文献   

11.
本文基于风洞测力、测压、等试验结果,研究了前掠翼的气动力特点,并与相应的后掠翼做了比较。研究了改进前掠翼根部流动的措施和改进后的收益。在低速情况下,根部适当后掠可以较好地改善前掠翼根部的流动,获得较大的气动力收益。配置鸭翼可以进一步改善前掠翼根部的流动,得到更大的升阻比。例如,根部适当后掠的前掠翼(整流翼)配置鸭翼以后,Cy=0.5时的升阻比可比边条后掠翼配置鸭翼(两种布局升力面面积相等)的升阻比提高24%。 前掠翼在跨音速有较小的零升阻力和诱导阻力。当Mα=1.1,α=6°时,前掠翼的诱导阻力要比后掠翼的小12.5%。低速时改善根部流动的措施在跨音速时仍然有效。前掠翼以及根部适当后掠的前掠翼(整流翼)配置合适的鸭翼,也可使前掠翼的高速性能得到较大改善。  相似文献   

12.
The planform, profile, and cross-sectional views of the wing-tip region of a half-wing model with an aspect ratio of 3.2 and three different wing configurations, namely, square-cut, simple fairing, and Whitcomb?s full winglet wing-tip, were visualized at various angles of attack using smoke-wire visualization technique. Visualization pictures clearly show that the wing-tip vortices at different angles of attack and wing-tip configurations had distinct formation and structure characteristics. A comparison of simple fairing and Whitcomb?s winglet configurations shows that the wing-tip vortices of the Whitcomb?s winglet configuration were reduced in strength and displaced outboard and upward, at least in the near-wake region. This resulted in an increased lift-to-drag ratio for the Whitcomb?s winglet configuration. The changes in the wing-tip vortex characteristics and the improved aerodynamic performance of the winglet were confirmed by Particle Image Velocimetry (PIV) measurements of the cross-flow velocity of the wing-tip trailing regions and the force measurement of the model.  相似文献   

13.
在亚临界流动范围内,对于带有鸭翼、机翼的翼身组合体,在其头尖部带有确定扰动的条件下,研究模型大迎角下的非对称背涡结构及其气动力特性随扰动周向角的演化规律。通过对模型表面的压力分布和侧向力分布分析,结合流场显示结果,表明翼身组合体绕流中鸭翼前各截面均处于非对称二涡区,头部截面侧向力分布随头尖部滚转而呈现出双稳态特性,鸭翼和机翼上方的流动在大迎角下处于完全分离流动状态,从而使得模型上鸭翼之后的截面侧向力接近为零。  相似文献   

14.
利用ARGON和MGAERO计算了三翼面布局飞机气动特性和机翼载荷,给出了有前翼、无前翼布局全机气动特性和机翼环量分布。研究分析了前翼对全机气动特性、机翼分布载荷的影响规律,得到了一些重要的结论,可用于飞机型号设计。  相似文献   

15.
旋转机翼飞机旋翼模式前飞状态干扰气动特性   总被引:1,自引:0,他引:1  
孙威  高正红  姜杰出 《航空学报》2016,37(8):2498-2506
和传统直升机相比,旋转机翼(CRW)飞机在旋翼模式前飞时各部件之间存在更为严重的气动干扰。为了获得旋转机翼/机身/鸭翼/平尾之间的非定常气动干扰规律,基于运动嵌套网格技术,通过求解三维非定常雷诺平均Navier-Stokes(URANS)方程,建立了旋翼前飞流场数值模拟方法。首先对传统直升机旋翼/机身干扰模型进行了计算,验证了方法的可靠性,然后对某旋转机翼飞机全机在旋翼模式前飞状态下的非定常流场进行了数值模拟,并对各个气动部件上的非定常气动力和力矩的变化进行了分析。结果表明:飞机在旋翼模式前飞时,机身部件对旋转机翼的干扰较弱,在经过机身上方时拉力峰值仅略有增加;旋转机翼对鸭翼和垂尾干扰较弱,对机身和平尾干扰较强,随着前飞速度增大,旋转机翼对平尾的干扰会产生较大的升力损失和抬头力矩,需要引起重视。计算结果为该类飞行器的总体综合设计提供了参考。  相似文献   

16.
牛中国  赵光银  梁华  柳平 《航空学报》2019,40(3):22201-022201
现代战机采用较多的三角翼,在大迎角绕流时存在前缘涡破裂等气动问题。作为新型主动流动控制技术,等离子体激励频带宽、响应快、结构简单、便于闭环控制,在解决三角翼气动问题上具有潜力。回顾了介质阻挡放电(DBD)等离子体气动激励的基本原理,及其用于三角翼前缘涡控制的研究进展。从来流条件、几何构型、激励参数等方面分析了DBD等离子体激励对流动控制效果的影响规律;结合不同激励频率下流场演化特性,分析了流动控制机理。最后,从理论研究和工程应用的角度,对三角翼前缘涡控制的发展进行总结展望。  相似文献   

17.
盒式翼布局带有前置鸭翼对飞机纵向力矩特性产生显著的影响。针对某盒式翼布局无人机,采用数值模拟方法研究鸭翼对盒式翼布局气动性能的影响,以及鸭翼安装角、鸭翼沿机身轴线的纵向位置和鸭翼面积对巡航状态下盒式翼布局气动性能的影响。结果表明:鸭翼可以提高盒式翼布局的最大升力系数和失速迎角,可以有效地调节纵向力矩,但是会使最大升阻比略微减小;在巡航迎角3°、巡航速度50m/s状态下,鸭翼安装角和鸭翼面积对盒式翼布局气动特性影响较大,而鸭翼纵向位置对盒式翼布局气动特性影响较小。综合考虑鸭翼的上述参数,可以显著提高盒式翼布局的气动性能。  相似文献   

18.
针对地效飞行器气动特性和纵向静稳定性这两个重要问题,应用数值模拟的方法对鸭式布局地效飞行器进行了研究。在鸭式布局中,主翼和鸭翼互相干扰,流场比较复杂。简化了地效飞行器模型,只考虑了主翼和鸭翼,通过改变鸭式布局地效飞行器中鸭翼相对主翼的位置和角度,分析其对气动特性和纵向静稳定性的影响。  相似文献   

19.
近耦合鸭式布局鸭翼展向吹气涡控技术数值模拟研究   总被引:1,自引:0,他引:1  
刘沛清  樊文博  曹硕 《飞机设计》2010,30(5):7-11,30
采用鸭翼展向吹气间接涡控技术,对后掠角为50°的主翼和鸭翼气动布局进行数值模拟,给出不同吹气动量系数下的数值模拟结果,建立了鸭翼吹气动量系数与布局气动力系数之间的关系。并针对该布局模型,将风洞测力、测压以及水洞流动显示试验结果与数值模拟结果进行了详细的分析比较,结果表明,对鸭翼实施展向吹气技术,确实可以延迟和控制主翼涡破裂、增大升力的效果,在大迎角下把鸭翼作为涡发生器对主翼进行控制是可行的,计算结果与试验结果定性上是吻合的,是可以模拟这种复杂流场的。  相似文献   

20.
大后掠翼前缘涡对其颤振特性的影响   总被引:1,自引:1,他引:0  
大迎角三角翼的前缘涡不仅可以改善其气动力特性,也会显著影响机翼的气动弹性特性.运用基于Euler方程的非定常气动力降阶模型(ROM)方法,耦合结构运动方程,在状态空间内建立了气动弹性分析模型,研究了70°削尖三角翼的大迎角颤振特性.研究结果显示前缘涡对该机翼颤振特性的影响不可忽略.颤振速度随迎角的增加而大幅降低,迎角α=20°时的颤振速度比α=0°时降低了22%.发现了颤振特性随迎角变化时出现的不连续现象,并揭示了该现象是由于系统颤振分支随着静态迎角的增加发生转移所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号