首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
对亚轨道飞行器能量管理段在线轨迹生成方案进行了研究。该方案将地面投影几何轨迹参数化,通过迭代计算参数生成标准轨迹,验证轨迹可行性并选择最优轨迹。经仿真验证,该方案能够在较短时间内完成轨迹的在线生成,结果满足进场着陆要求。  相似文献   

2.
Paul Williams   《Acta Astronautica》2009,64(11-12):1191-1223
The dynamics and control of a tethered satellite formation for Earth-pointing observation missions is considered. For most practical applications in Earth orbit, a tether formation must be spinning in order to maintain tension in the tethers. It is possible to obtain periodic spinning solutions for a triangular formation whose initial conditions are close to the orbit normal. However, these solutions contain significant deviations of the satellites on a sphere relative to the desired Earth-pointing configuration. To maintain a plane of satellites spinning normal to the orbit plane, it is necessary to utilize “anchors”. Such a configuration resembles a double-pyramid. In this paper, control of a double-pyramid tethered formation is studied. The equations of motion are derived in a floating orbital coordinate system for the general case of an elliptic reference orbit. The motion of the satellites is derived assuming inelastic tethers that can vary in length in a controlled manner. Cartesian coordinates in a rotating reference frame attached to the desired spin frame provide a simple means of expressing the equations of motion, together with a set of constraint equations for the tether tensions. Periodic optimal control theory is applied to the system to determine sets of controlled periodic trajectories by varying the lengths of all interconnecting tethers (nine in total), as well as retrieval and simple reconfiguration trajectories. A modal analysis of the system is also performed using a lumped mass representation of the tethers.  相似文献   

3.
《Acta Astronautica》2014,93(1):355-372
In this study, the final approach to a moon or other body from resonance is explored and compared to the invariant manifolds of unstable periodic orbits. It is shown that the stable manifolds of planar Lyapunov orbits can act as a guide for the periods or resonances that are required for the final approach in both the planar and spatial problems. Previously developed techniques for the planar problem are expanded for use with resonances and used for comparison with trajectories approaching a moon from these resonances. A similar technique is then used for exploring the relationship of invariant manifolds to approach trajectories in the spatial problem. It is shown that the invariant manifolds of unstable periodic orbits provide insight into the trajectory design, and they can be used as a guide to the more direct approach trajectories.  相似文献   

4.
Libration point orbits may be ideal locations for satellite imaging formations. Therefore, control of these arrays in multi-body regimes is critical. A continuous feedback control algorithm is developed that maintains a formation of satellites in motion that is bounded relative to a halo orbit. This algorithm is derived based on the dynamic characteristics of the phase space near periodic orbits in the circular restricted three-body problem (CR3BP). By adjusting parameters of the control algorithm appropriately, satellites in the formation follow trajectories that are particularly advantageous to imaging arrays. Image reconstruction and coverage of the (u, v) plane are simulated for interferometric satellite configurations, demonstrating potential applications of the algorithm and the resulting motion.  相似文献   

5.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

6.
A Newton-type method is proposed to improve the accuracy of control for relative motion of two satellites in close formation. We assume that the deputy satellite is equipped with a passive attitude control system that provides one-axis stabilization, and one or two orbit control thrusters are installed along the stabilized axis. Previous studies show that it is possible to construct periodic relative trajectories both in case of passive magnetic and spin stabilization. However, the accuracy of the numerically obtained control is quite low due to modeling errors caused by linearization of the equations of relative motion. Therefore, a correction procedure is required to compensate for nonlinear effects. To this end we suggest a recently developed algorithm based on the Newton method for solving nonlinear systems with geometric constraints. Being implemented, this algorithm allows decreasing the modeling error by up to ten times. The previously found control and trajectory of the linearized system are used as initial approximations.  相似文献   

7.
The possibility of nonimpact tension of a cable after its weakening when a small load moves along the cable whose ends are fixed on a massive dumbbell-like spacecraft which is moving in a steady-state manner along a circular orbit is considered. The conditions of existence and classification of the trajectories of nonimpact motion, including periodic ones, are presented.  相似文献   

8.
Coulomb forces between charged close-flying satellites can be used for formation control, and constant electric potentials enable static equilibria solutions. In this work, open-loop time-varying potential functions, which produce periodic, two-craft, Coulomb formation motions are demonstrated for the first time. This is done in the rotating Hill-Frame, with linearized gravity, and craft position components assumed in the form of simple harmonic oscillators. Substitution of the oscillatory functions into the dynamics, further constrains these functions, and yields necessary potential histories, to produce the periodic flow. The assumed position functions, however, are not arbitrary, since the dynamical model restricts what oscillatory trajectories are allowed. Specifically, a Hill-Frame integral of motion is derived, and this is used to show certain candidate periodic functions to be inadmissible. The system dynamics are then linearized to expose stability properties of the solutions, and it is established that asymptotic stability is impossible for all orbit families. Finally, the degree of instability in the assumed motions, over free parameter ranges, is determined numerically via the Floquet multipliers of the associated full-cycle state-transition matrices.  相似文献   

9.
An algorithm for studying the families of symmetric periodic orbits using their generating solutions, whose structure was presented in the first part of this paper [1], is described. The algorithm is essentially based on symmetry of the generating solution and on its initial approximation. More than 20 new families of symmetric periodic solutions of the Hill’s problem have been found and investigated with the use of this algorithm. The families including trajectories for orbital injection into the vicinity of collinear libration points L 1,2 are described.  相似文献   

10.
YES2 (launching 2007) aims to demonstrate a tether-assisted re-entry concept, whereby payload will be returned to Earth using momentum provided from a swinging tether. Deployment takes place in two phases: (1) deployment of 3.5 km of tether to the local vertical and hold, and (2) deployment to 30 km for a swinging cut. Optimal trajectories are determined for both phases after comparing the effect of different cost functions on the deployment dynamics. Closed-loop control is provided by linearizing the dynamics around the optimal trajectories and solving a receding horizon control problem for a set of linear feedback gains. The controllers are tested in a flexible tether model with large disturbances to the hardware model and environmental variables. Closed-loop simulations show that the system can be controlled quite well using only feedback of length and length rate.  相似文献   

11.
The design of interplanetary trajectories based on patched circular restricted three body models is gradually becoming a valuable alternative to the classical patched conic approach. The main advantage offered by such a model is the possibility to exploit the manifold dynamics to move naturally far from or toward a body. Generally, propulsive maneuvers are required to match these structures. Low-thrust arcs offer the possibility to have a significant propellant mass reduction when moving from manifold to manifold. The aim of this paper is to present a methodology to design low-thrust trajectories between two planetary orbits connecting the manifolds of two circular three body systems. The approach is based on a grid search on the main parameters governing the solution to identify those trajectories moving within the manifold images on given Poincarè sections. The value of the Jacoby constant of the target libration point periodic orbit is chosen as stop condition for the thrusting phases. Ballistic arcs follow up to the proper Poincarè section intersection. A grid search for an Earth to Venus transfer is presented as test case.  相似文献   

12.
The application of dynamical systems techniques to mission design has demonstrated that employing invariant manifolds and resonant flybys enables previously unknown trajectory options and potentially reduces the ΔVΔV requirements. In this investigation, planar and three-dimensional resonant orbits are analyzed and cataloged in the Earth–Moon system and the associated invariant manifold structures are computed and visualized with the aid of higher-dimensional Poincaré maps. The relationship between the manifold trajectories associated with multiple resonant orbits is explored through the maps with the objective of constructing resonant transfer arcs. As a result, planar and three-dimensional homoclinic- and heteroclinic-type trajectories between unstable periodic resonant orbits are identified in the Earth–Moon system. To further illustrate the applicability of 2D and 3D resonant orbits in preliminary trajectory design, planar transfers to the vicinity of L5 and an out-of-plane transfer to a 3D periodic orbit, one that tours the entire Earth–Moon system, are constructed. The design process exploits the invariant manifolds associated with orbits in resonance with the Moon as transfer mechanisms.  相似文献   

13.
高长生  郑建华  荆武兴  吴霞 《宇航学报》2006,27(6):1152-1156
研究了相对黄道面有一定倾角的探测器轨道设计的问题。以金星借力轨道设计为例,分析了轨道偏心率与轨道倾角增量之间的关系。根据C3匹配原理搜索了“地球-中间天体-地球”多天体交会的发射窗口。最后,设计了与地球轨道周期相等的三次地球借力轨道,该轨道倾角可以达到黄纬30°以上。理论分析及仿真结果表明:基于地球引力设计此类轨道时,应采用多天体交会方案,才能既保证地球逃逸能量低,又保证首次飞入地球影响球前轨道偏心率较大的双重指标;同时应采用多次地球借力方案,该方案具有每次借力后轨道偏心率逐渐减小的特点,当其减小到零时,再次借力后轨道倾角不会继续增加。  相似文献   

14.
载人机动装置救援轨迹优化设计   总被引:1,自引:0,他引:1  
本文研究宇航员携带舱外机动装置(MMU)进行舱外飞行,营救脱离空间站的目标,随后返回空间站的Hill制导方法。根据最小燃料指标,精度要求和时间约束,优化设计MMU出舱营救脱离空间站的宇航员或其它装置的飞行轨迹。求出17种典型情况下的最小燃料解,提出了救援轨迹设计准则。本文分析了MMU交会目标过程中,导航和控制误差对Hill制导瞄准误差的影响,提出了用多脉冲Hill制导按标称最优轨迹飞行的设计方案,  相似文献   

15.
The motion of a free gyrostat consisting of a platform with a triaxial ellipsoid of inertia and a rotor with a slight asymmetry with respect to the axis of rotation is considered. Dimensionless equations of motion for a system with perturbations caused by the small asymmetries of the rotor are written in Andoyer-Deprit variables. These perturbations result in a chaotic layer in the separatrix vicinity. Heteroclinic and homoclinic trajectories are written in analytical form for gyrostats with different ratios of their moments of inertia. These trajectories are used to construct a modified Melnikov function, and to produce control that eliminates separatrix chaos. The Poincare sections and Melnikov function are constructed via numerical modeling that demonstrates the effectiveness of control.  相似文献   

16.
基于SQP方法的常推力月球软着陆轨道优化方法   总被引:8,自引:3,他引:8  
孙军伟  乔栋  崔平远 《宇航学报》2006,27(1):99-102,112
月球软着陆是未来月球探测中的一项关键技术。针对这项技术,本文给出了一种基于SQP方法的常推力月球软着陆轨道优化方法。该方法通过将常推力月球软着陆轨道离散化,利用离散点处状态连续作为约束条件,把常推力月球软着陆轨道优化问题归结为一个非线性规划问题,对于此问题的求解,其初值均为有物理意义的状态和控制量,从而避免了采用传统优化方法在解决此优化问题时对没有物理意义变量初值的猜测。最后,利用SQP方法求解了此轨道优化问题。仿真计算结果表明这种离散化的方法应用于此轨道优化问题可以避免传统轨道优化方法对初值敏感的问题。  相似文献   

17.
Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy.Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories.In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system.This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.  相似文献   

18.
超细AP团聚表征研究   总被引:1,自引:0,他引:1  
根据实际应用的需要,运用筛分技术和静电分散、分级技术相结合的方法对AP进行分级,采用质量分数对AP团聚状态进行表征。从最大荷质比、分级效率和安全可靠性3个方面确定分散、分级电压,同时将静电分散力与颗粒间范德瓦尔斯力和液桥力进行比较。计算结果表明,分散、分级电压采用6 kV是合理的。最后,从热学性质与实际生产应用两个方面对分级结果进行分析,并将此方法与传统方法进行了比较。结果表明,该方法合理、可靠。  相似文献   

19.
伴随卫星轨道保持   总被引:2,自引:4,他引:2  
文中利用伴随轨道方程推导出伴随卫星相对运动状态转移方程。基于这一状态转移方程,研究了双脉冲校正中的伴随运动状态的变化,并得出需要的脉冲控制量的解析式。利用遗传算法对脉冲控制量进行了优化设计,求得使总脉冲最小的最优变轨时间,脉冲控制量和轨迹。  相似文献   

20.
组合导航系统初始对准的稳定性分析及其控制   总被引:2,自引:0,他引:2  
针对INS/GPS组合导航系统的初始对准问题 ,对该组合系统的稳定性进行了理论分析和仿真研究。理论分析表明 ,该系统是稳定的 ;仿真结果说明 ,载体在外部周期激励作用下 ,如系统采样频率选择不当 ,状态变量的估计结果也出现周期性的振荡 ;如果是外部随机脉冲激励 ,状态变量的估计结果则呈现随机性。对于外部周期激励 ,采用改变采样频率或适当的线性状态反馈 ,可以较好的避免状态变量估计结果的振荡 ,满足对估计结果的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号