首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Astronautica》2013,82(2):456-465
The out-of-plane amplitude along quasi-periodic trajectories in the Earth–Moon system is highly sensitive to perturbations in position and/or velocity as underscored recently by the ARTEMIS spacecraft. Controlling the evolution of the out-of-plane amplitude is non-trivial, but can be critical to satisfying mission requirements. The sensitivity of the out-of-plane amplitude evolution to perturbations due to lunar eccentricity, solar gravity, and solar radiation pressure is explored and a strategy for designing low-cost deterministic maneuvers to control the amplitude history is also examined. The method is sufficiently general and is applied to the L1 quasi-periodic orbit that serves as a baseline for the ARTEMIS P2 trajectory.  相似文献   

2.
An efficient self-contained trajectory optimization software is generated by making use of de Pontécoulant's analytic lunar theory removing the need for an outside third body ephemeris program to compute the lunar and solar position vectors at each integration step. The accelerations being further resolved along the rotating Euler–Hill frame after expansion to third order in the spacecraft radial distance, the adjoint differential equations are derived in a direct manner complementing the generation of the dynamic system of equations for full compatibility. Because the variation of parameters equations are cast in terms of the nonsingular equinoctial elements with the perturbation accelerations resolved in their analytic form along the rotating axes, the adjoint equations are also derived in the same manner providing a highly efficient and accurate system of equations for rapid computations in conjunction with Aerospace Corporation's NLP2 nonlinear programming codes to search for the initial values of the multipliers that steer the spacecraft towards its target orbit in minimum time. Numerical simulations show that the solutions obtained by the analysis developed in this paper are essentially identical to the more indirect approach based on the use of inertial accelerations obtained from a separate ephemeris generator and subsequent conversions to the thrust frame and equinoctial system.  相似文献   

3.
The Lorentz force acting on an electrostatically charged spacecraft in the Earth's magnetic field provides a new propellantless means for controlling a spacecraft's orbit. Assuming that the Lorentz force is much smaller than the gravitational force, the perturbation of a charged spacecraft's orbit by the Lorentz force in the Earth's magnetic field, which is simplified as a titled rotating dipole, is studied in this article. Our research starts with the derivation of the equations of motion in geocentric equatorial inertial Cartesian coordinates using Lagrange mechanics, and then derives the Gauss variational equations involving Lorentz-force perturbation using a set of nodal inertial coordinates as an intermediate step. Subsequently, the approximate averaged changes in classical orbital elements, including single-orbit-averaged and one-day-averaged changes, are obtained by employing orbital averaging. We have found that the approximate analytic one-day-averaged changes in semi-major axis, eccentricity, and inclination are nearly zero, and those in the other three angular orbital elements are affected by J2 and Lorentz-force perturbations. This characteristic is applied to model bounded relative orbital motion in the presence of the Lorentz force, which is termed Lorentz-augmented J2-invariant formation. The necessary condition for J2-invariant formation is derived when the chief spacecraft's reference orbit is either circular or elliptical. It is shown that J2-invariant formation is easier to implement if the deputy spacecraft is capable of establishing electric charge. All conclusions drawn from the approximate analytic solutions are verified by numerical simulation.  相似文献   

4.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

5.
The stationkeeping of symmetric Walker constellations is analyzed by considering the perturbations arising from a high order and degree Earth gravity field and the solar radiation pressure. These perturbations act differently on each group of spacecraft flying in a given orbital plane, causing a differential drift effect that would disrupt the initial symmetry of the constellation. The analysis is based on the consideration of a fictitious set of rotating reference frames that move with the spacecraft in the mean sense, but drift at a rate equal to the average drift rate experienced by all the vehicles over an extended period. The frames are also allowed to experience the J2-precession such that each vehicle is allowed to drift in 3D relative to its frame. A two-impulse rendezvous maneuver is then constructed to bring each vehicle to the center of its frame as soon as a given tolerance deadband is about to be violated. This paper illustrates the computations associated with the stationkeeping of a generic Walker constellation by maneuvering each leading spacecraft within an orbit plane and calculating the associated velocity changes required for controlling the in-plane motions in an exacting sense, at least for the first series of maneuvers. The analysis can be easily extended to lower flying constellations, which experience additional perturbations due to drag.  相似文献   

6.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

7.
《Acta Astronautica》2010,66(11-12):1650-1667
The stationkeeping of symmetric Walker constellations is analyzed by considering the perturbations arising from a high order and degree Earth gravity field and the solar radiation pressure. These perturbations act differently on each group of spacecraft flying in a given orbital plane, causing a differential drift effect that would disrupt the initial symmetry of the constellation. The analysis is based on the consideration of a fictitious set of rotating reference frames that move with the spacecraft in the mean sense, but drift at a rate equal to the average drift rate experienced by all the vehicles over an extended period. The frames are also allowed to experience the J2-precession such that each vehicle is allowed to drift in 3D relative to its frame. A two-impulse rendezvous maneuver is then constructed to bring each vehicle to the center of its frame as soon as a given tolerance deadband is about to be violated. This paper illustrates the computations associated with the stationkeeping of a generic Walker constellation by maneuvering each leading spacecraft within an orbit plane and calculating the associated velocity changes required for controlling the in-plane motions in an exacting sense, at least for the first series of maneuvers. The analysis can be easily extended to lower flying constellations, which experience additional perturbations due to drag.  相似文献   

8.
同波束VLBI技术用于月球双探测器精密定轨及重力场解算   总被引:1,自引:0,他引:1  
鄢建国  李斐  刘庆会  平劲松  李金岭 《宇航学报》2010,31(11):2536-2541
同波束VLBI通过同时观测两个探测器的多点频信号,可以得到两个探测器之间高精度的差分相位时延,日本月球探测计划SELENE充分体现了这一技术在月球探测器精密定轨中的贡献。本文针对采样返回的月球探测任务中,轨道器和返回器同时绕月飞行期间,研究利用同波束VLBI跟踪数据在探测器精密定轨和月球重力场仿真解算中的贡献。结果表明,加入同波束VLBI跟踪数据之后,探测器定轨精度有显著提高,改进超过一个量级。综合同波束VLBI跟踪数据解算得到的重力场模型相比于传统的USB双程测距测速数据,中低阶次位系数精度有明显改进,并且定轨精度有望能达到米级。
  相似文献   

9.
The European Retrievable Carrier (EURECA) is a platform to be launched, deployed and retrieved in low Earth orbit by the Space Shuttle.A newly developed analytical orbit prediction method is described which meets the severe requirements for EURECA's orbit propagation. It is based on an averaging procedure including the Earth's zonal harmonics J2, J3 and J4 and a refined treatment of the air drag perturbation where EURECA's large solar panels are taken into account. Some orbit prediction results are included.In order to offer more flexibility for the Shuttle retrieval of EURECA, it is proposed to execute a part of the rendezvous manoeuvres by EURECA. A corresponding strategy is described.  相似文献   

10.
Perturbation theory is applied to the Vinti problem—motion about an oblate spheroid—to include the gravitational effects of the sun and moon. The problem is formulated using the extended phase space method which introduces a new independent variable similar to the true anomaly. The disturbing Hamiltonian H1 for third bodies is of order J22 (second order) and the final goal is a theory including second order short and long period terms and third order secular terms. The current paper however carries the development only to the second order in the secular terms and the first order in the periodic terms. Problems of including the higher orders are discussed. Therefore, in the development of H1 all terms of order 10?9 or larger are retained. The lunar emphemeris retains terms to e2 in the lunar eccentricity. The perturbation analysis is carried out by means of Lie series and is developed through the first order only which is consistent with the final accuracy desired. The generating function W1 is obtained and separated into the long period, short period and secular terms. From W1 the coordinates are defined from the Lie series by means of a transformation equation. These coordinates are non-singular for small eccentricity and inclination. Because of the complexity of the equations all algebraic computations were accomplished by means of a computerized Poisson series manipulator developed at the Naval Research Laboratory.  相似文献   

11.
田百义  张熇  冯昊  张相宇  高博宇  周文艳 《宇航学报》2022,43(12):1587-1596
针对探测器在木星系统内多次借力的飞行路径和轨道优化设计问题,提出了一种基于三层优化思想的飞行路径规划方法,该方法可根据给定的任务约束和交会目标,自动搜索探测器在木星系统内的借力飞行序列,同时完成标称飞行轨道的优化设计。首先,文章在给定轨道动力学模型和木卫借力模型基础上,建立了面向木卫交会任务的两次借力飞行轨道优化设计模型和求解方法;然后,采用结合遗传算法、全局遍历和贪婪算法的三层优化设计思路,给出了一种环木飞行路径规划方法;最后,以木星四颗卫星的交会任务为例进行了仿真分析。仿真结果表明:针对木卫的交会任务,探测器速度增量需求随木卫借力次数的增多,呈现先显著减小后逐渐增大的现象;探测器采用多次木卫借力的策略,可显著降低探测器的速度增量需求;探测器速度增量达到最优之后,借力目标收敛于交会目标,且速度增量随借力次数的进一步增多而逐渐增大。  相似文献   

12.
First order averaging is applied to the artificial satellite problem to obtain the averaged orbit which includes the secular, long and medium period effects of the oblateness of the Earth and the third body perturbations of the moon and sun. Perturbation theory is then used to recover the short period effects due to J2, the moon, and sun. The perturbation analysis is carried out by means of Lie series and is developed through the first order. Optimization of the resulting short period series was then accomplished in several steps: first all separate algebraic coefficients were precalculated and stored; then all redundant SIN/COS calls were eliminated; next all repetition of numeric and algebraic coefficients were precalculated in pairs; application of the distributive principle allowed a significant reduction in additions and multiplications; finally trigonometric identities were used to further reduce the SIN/COS computations. The result of this optimization along with an interpolator for the averaged equations of motion results in a computer program which requires only 16 the CPU time (with no loss in accuracy) of the original non-optimized test program.  相似文献   

13.
This paper deals with energetically optimal multi-impulse transfers of a spacecraft in the central Newtonian gravitational field near a planet. The transfer from a point on initial orbit to the final orbit with the given angular momentum and energy constants is considered. The transfer time is bounded above.With the distance from spacecraft to planet limited and the time free, such parameters of given orbits are chosen that the 3-impulse apsidal transfer Tr is optimal with an intermediate impulse at the maximum distance. On the basis of necessary optimality conditions an algorithm is developed to numerically determine the desired optimal transfer trajectory Tt under time constraint, the apsidal trajectory Tr being taken as initial approach. From the geometry and energy viewpoints, both trajectories Tt and Tr are close to each other. The trajectory Tt is also 3-impulsive, all impulses on it are nonapsidal. The distance from the planet is larger and the sum of impulses is less for this trajectory than for the initial trajectory Tr with the same transfer time.The simplified solution of the problem is constructed producing good approximation to the exact numerical optimization results. The solution asymptotics is found when the transfer time tends to infinity.  相似文献   

14.
The stationary orbits around an asteroid, if exist, can be used for communication and navigation purposes just as around the Earth. The equilibrium attitude and stability of a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid are studied. The linearized equations of attitude motion are obtained under the small motion assumption. Then, the equilibrium attitude is determined in both cases of a general and a symmetrical spacecraft. Due to the higher-order inertia integrals of the spacecraft, the equilibrium attitude is slightly away from zero Euler angles. Then necessary conditions of stability of this conservative system are analyzed based on the linearized equations of motion. The effects of different parameters, including the harmonic coefficients C20 and C22 of the asteroid and higher-order inertia integrals of the spacecraft, on the stability are assessed and compared. Due to the significantly non-spherical shape and rapid rotation of the asteroid, the effects of the harmonic coefficients C20 and C22 are very significant, while effects of the third- and fourth-order inertia integrals of the spacecraft can be neglected. Considering a spacecraft on a stationary orbit around an example asteroid, we show that the classical stability domain predicted by the Beletskii–DeBra–Delp method on a circular orbit in a central gravity field is modified due to the non-spherical mass distribution of the asteroid. Our results are confirmed by a numerical simulation.  相似文献   

15.
利用理论分析、数值仿真与相图分析,论述了月球卫星冻结轨道与地球卫星冻结轨道的区别,分析结果表明,月球重力场存在较大异常,会引起月球卫星轨道发生较大漂移。月球冻结轨道在田谐项影响下,还存在中等周期的漂移。仅简单考虑带谐项系数,无法求得完美的月球冻结系数。月球重力场异常对绕月卫星的影响与地球相比存在很大区别。月球轨道卫星的长期运行与控制策略的设计,不能按照地球轨道卫星的传统方法。目前使用的月球引力模型精度较差,尽管基于这些不可靠的引力模型,可以得出很多有用结论,但对未来高精度的月球探测任务来说,还存在不足,需要在将来的月球探测任务中,探测高精度的月球重力场,以利于未来月球探测航天系统的任务分析与设计。  相似文献   

16.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission used six planetary gravity assists in order to enable capture into orbit about Mercury. A key element of MESSENGER's successful trajectory was achieving the proper gravity assist from each planetary flyby. The criticality of the MESSENGER gravity assists levied tight accuracy requirements on the planetary-flyby targeting. Major errors could have precluded Mercury orbit insertion or required modifications to the trajectory that increased mission complexity, cost, and risk by requiring additional Mercury flybys and extending mission duration. Throughout the mission, MESSENGER modified its strategy for achieving accurate planetary flybys. By using solar sailing, the MESSENGER team was able to eliminate all of the flyby approach maneuvers without sacrificing flyby accuracy, thereby saving mission ΔV margin. The elimination of these approach maneuvers also markedly reduced mission risk, as these approach maneuvers were nominally planned during a time of heightened sensitivity to errors and precluded unique flyby science opportunities. The paradigm shift used by MESSENGER may be useful for other interplanetary missions, particularly if their trajectories require gravity assists in the inner solar system.  相似文献   

17.
地球轨道卫星电推进变轨控制方法   总被引:1,自引:0,他引:1  
杨大林  徐波  高有涛 《宇航学报》2015,36(9):1010-1017
针对地球同步轨道(GEO)卫星,采用电推进系统完成转移轨道变轨。采用基于Lyapunov函数的反馈控制方法确定时间最短变轨策略。首先在开普勒模型下研究变轨过程,然后在开普勒模型的基础上考虑地球J2项摄动和地球阴影,最后在全引力模型下研究变轨过程,即在开普勒模型的基础上考虑地球非球形引力摄动、日月第三体引力摄动、太阳光压摄动和地球阴影。仿真结果显示在变轨过程中摄动项不可忽略,除地球J2项摄动外还应该考虑日月第三体引力摄动和太阳光压摄动。对比上述三组仿真结果,发现考虑摄动后轨道转移时间的增加比燃料消耗的增加更为明显。数值仿真结果表明本文研究对未来的全电推进任务具有良好的通用性和应用参考价值。  相似文献   

18.
Saturn’s rotation relative to a center of mass is considered within an elliptic restricted three-body problem. It is assumed that Saturn is a solid under the action of gravity of the Sun and Jupiter. The motions of Saturn and Jupiter are considered elliptic with small eccentricities eS and eJ, respectively; the mean motion of Jupiter nJ is also small. We obtain the averaged Hamiltonian function for a small parameter of ε = nJ and integrals of evolution equations. The main effects of the influence of Jupiter on Saturn’s rotation are described: (α) the evolution of the constant parameters of regular precession for the angular momentum vector I2; (β) the occurrence of new libration zones of oscillations I2 near the plane of the celestial equator parallel to the plane of the Jupiter’s orbit; (γ) the occurrence of additional unstable equilibria of vector I2 at the points of the north and south poles of the celestial sphere and, as a result, the existence of homoclinic trajectories; and (δ) the existence of periodic trajectories with arbitrarily large periods near the homoclinic trajectory. It is shown that the effects of (β), (γ), and (δ) are caused by the eccentricity e of the Jupiter’s orbit and are practically independent of Jupiter’s mass (within satellite approximation).  相似文献   

19.
不同月球借力约束下的地月Halo轨道转移轨道设计   总被引:1,自引:0,他引:1  
张景瑞  曾豪  李明涛 《宇航学报》2016,37(2):159-168
针对地月系L2点不同任务需求下的低耗能转移轨道设计问题,基于不变流形理论与混合优化技术,深入研究了不同月球借力约束与不同幅值Halo轨道的入轨点(简称HOI点)对转移轨道飞行时间与燃料消耗的影响,给出了HOI点选择策略。首先结合任务要求并考虑月球引力影响,在月球借力点施加不同约束条件,通过微分修正算法调整Halo轨道的稳定流形,设计月球到Halo轨道的转移轨道。采用遗传算法与微分修正算法相结合的混合优化策略,在同时考虑地球停泊轨道高度、倾角、升交点赤经与航迹角等多约束条件下,对燃料最优的地月转移轨道进行研究。最后,分析月球借力高度、借力方位角和不同HOI点对平动点转移轨道飞行时间与燃耗变化量的影响,对于考虑月球借力的地月平动点转移轨道设计与应用具有重要的参考价值。  相似文献   

20.
Various spacecraft have been and will be sent to asteroids to characterize them. Generally, an asteroid's gravity field is very irregular and not accurately known when compared to the gravity field of a major planet, Earth in particular. It has been well studied that the irregularity significantly affects the trajectory of an orbiting spacecraft, and causes it to impact or to escape from the asteroid. Complementary to that, this paper focuses on the influence of the limited knowledge of this gravity field on the evolution of the spacecraft's orbit. It develops a general method by which this influence can be quantified. This method comprises specific Monte Carlo simulations with a discrete set of low-altitude orbits, taking into account the uncertainties in the gravity-field parameters. For illustration purposes, it is applied to two different asteroids. Already after three revolutions, the gravity-field uncertainties propagate to significant position uncertainties; this specifically holds for prograde orbits, and around the smaller asteroid. Applying this robust and accurate method helps mission designers and planners to assess the risk posed by gravity uncertainties, and take appropriate measures such as choosing the most favorable orbital geometries and/or lowering the orbit more slowly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号