首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
氧化钇稳定氧化锆多孔陶瓷的制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以叔丁醇为溶剂,采用凝胶注模成型方法,制备出防/隔热的摩尔分数为8%Y_2O_3-ZrO_2(8YSZ)多孔陶瓷.在浆料中初始固相含量固定为10%体积分数的基础上,研究了烧结温度对8ySZ陶瓷材料的气孔率、开气孔率、孔径尺寸分布及显微结构的影响,分析了压缩强度、热导率与结构之间的关系.通过改变烧结温度,所制备的8YSZ多孔陶瓷的气孔率为65%~74%,孔隙分布均匀,平均孔径为0.68~1.82μm,压缩强度为7.92~13.15 MPa,室温热导率[最低可达0.053 W/(m·K)],比相应的致密陶瓷[~2.2 W/(m·K)]低一个数量级,且随着气孔率的增加而降低.  相似文献   

2.
复合材料层合板螺栓连接失效分析   总被引:3,自引:0,他引:3  
利用ABAQUS软件,加入失效分析程序对层合板螺栓连接挤压强度进行分析.本文提出一种合理的材料刚度退化方法模拟材料失效过程,计算中采用Hashin准则为失效判据,考虑了接触关系,材料逐步失效以及几何非线性等因素.研究结果表明,对压缩失效与拉伸失效采用不同的刚度退化方法能较准确地描述材料失效状态;孔径与板厚度比(D/t)对螺栓孔挤压强度影响较大,随着D/t值减小,螺栓孔挤压失效区域向螺栓孔中心线位置集中.  相似文献   

3.
以氮化硅为原料,以叔丁醇为溶剂,采用凝胶注模成型工艺和无压烧结工艺(17500C、保温1.5h、流动氮气气氛),制备出具有高强度和高气孔率的多孔氮化硅.在浆料中初始固相含量固定为15%体积分数的基础上,研究了烧结助剂含量对多孔氮化硅的气孔率、孔径尺寸分布、物相组成及显微结构的影响,分析了弯曲强度与结构之间的关系.结果表明,通过改变烧结助剂含量,所制备的多孔氮化硅的气孔率为52%-65%;气孔尺寸呈单峰分布,均匀性好,平均孔径为0.82-1.05μm;弯曲强度为64.4-193.5 MPa,且随烧结助剂含量增加呈先增大后减少,在烧结助剂含量为7.5%质量分数时达到最大值(193.5±10.1)MPa.  相似文献   

4.
基于缺陷概率特点的粉末冶金材料寿命预测概率模型   总被引:5,自引:3,他引:2  
粉末冶金材料由于其制造工艺的特点,强度和寿命对微缺陷(夹杂、气孔、表面划伤)十分敏感,导致了粉末冶金材料的破坏具有较大的分散性,使得寿命预测更为困难。本文根据国内粉末材料中缺陷的分布特点,基于文献[79]中概率断裂分析的思路,对原有方法进行了修正和推广,重新给出了缺陷在表面、亚表面以及内部时的定义及缺陷在这些不同位置时出现概率断裂的确定方法,建立了一个可考虑缺陷形状、大小、位置等分布特征的粉末冶金材料寿命预测概率模型,并基于此计算了不同尺寸缺陷位于不同位置时材料的失效概率及总失效概率。分析表明:所给出的方法可以很好的表征国内工艺条件下粉末冶金材料缺陷的概率特征对强度寿命的影响,方法是有效的。   相似文献   

5.
多孔介质强迫发汗冷却是解决高超声速飞行器前缘热防护问题的有效措施。其中,多孔介质的孔隙结构及性能对于其冷却效果和可靠性影响显著,因此,制备出符合强迫发汗冷却要求的多孔材料至关重要。本工作以Ti6Al4V预合金粉末为原料,采用模压成型结合高温烧结,制备了不同开气孔率的多孔Ti6Al4V试样,通过金相及SEM观察、力学性能测试、XRD分析等方法研究烧结温度和保温时间对多孔Ti6Al4V孔隙形貌、显微组织和力学性能的影响。结果表明:提高烧结温度、延长保温时间会降低材料的开气孔率;开气孔率高时,材料中孔隙连通,渗流率高,但样品强度低;开气孔率低时,材料中孔隙闭合,大孔数量减少,渗流率低,强度高。其中开气孔率为21.8%的多孔Ti6Al4V试样综合性能最好。当该多孔Ti6Al4V样品作为主动防热材料时,可以耐受平均热流为2.5 MW/m2的火焰烧蚀。  相似文献   

6.
以琼脂糖作为凝胶物质,采用凝胶注模工艺制备了多孔氮化硅陶瓷,通过改变浆料的固相含量,制备了不同性能的多孔氮化硅陶瓷.结果表明,随着浆料的固相含量从35vol%增加到45vol%,材料的气孔率从57.6%减小至40.8%,弯曲强度从96 MPa增加到178 MPa;大量的长棒状β-Si3N4晶粒从孔壁上生长出来,将气孔填充,其生长方式为溶解-沉淀-析出与气-液-固两种生长机制协同作用的结果.长棒状的氮化硅晶须和恰当的界面结合强度是多孔氮化硅陶瓷具有较高强度的主要原因.  相似文献   

7.
采用细观力学方法对单向纤维增强陶瓷基复合材料单轴拉伸强度进行研究.采用剪滞模型描述复合材料出现损伤后的细观应力场,结合基体随机开裂模型、断裂力学界面脱黏准则确定基体裂纹间距及界面脱黏长度.当基体裂纹达到饱和后,假设纤维强度服从威布尔分布,完好纤维和断裂纤维承载满足总体载荷承担法则,采用纤维随机失效模型确定继续加载过程中纤维断裂概率及断裂位置,当纤维承载达到最大时,复合材料失效.讨论了基体威布尔模量和特征强度、纤维/基体界面剪应力和界面脱黏能、纤维威布尔模量和特征强度对纤维失效,进而对复合材料拉伸失效强度的影响.与试验数据对比表明:提出的模型是有效的.   相似文献   

8.
运用渐进损伤的唯象描述方法,结合应力分析、失效判断、材料刚度退化对开孔层压板在拉伸载荷下从材料开始出现局部破坏直到整个构件失效的过程进行了基于2D有限元模型的数值模拟,模拟得到的位移栽荷曲线与文献曲线基本一致,对最终破坏载荷的预测与文献中的试验值相差-2.0%,与文献预测值相差1%,表明渐进损伤方法可以在工程上用于层压板的失效模拟和预测.  相似文献   

9.
利用有限元软件获得了X-Cor夹层结构的应力场,并对其压缩强度进行分析。提出了适合于X-Cor夹层结构失效机理分析的失效判据和材料刚度退化规则,明确其失效过程和模式。根据失效判据,采用有限元模型中发生刚度退化的单元及其分布模拟失效的类型及扩展路径,说明X-Cor夹层结构在压缩载荷下的失效机理。有限元研究表明:压缩过程中,树脂区首先失效,其次是Z-pin,主要的失效模式是Z-pin屈曲失效,失效单元的扩展路径有一定的分散性。通过有限元分析结果与试验值的比较,数值吻合较好,计算误差为-7.6%~9.5%。  相似文献   

10.
研究了高温真空环境下多孔(气孔率>50%)氯化硅陶瓷的弯曲强度,并进行了初步分析.结果表明,多孔氮化硅陶瓷在真空中的高温强度随温度上升而降低,由于没有氧化作用,晶界玻璃相在高温下的软化成为影响其强度的主要因素.  相似文献   

11.
对三种孔隙率不同的陶瓷多孔材料的渗透率进行了实验研究,并根据直毛细管模型对陶瓷多孔材料的某些特性(孔隙平均直径,比表面积)进行了估算,对所得结果作了初步分析并提出了需进一步研究的问题。  相似文献   

12.
为了解决氧化铝基陶瓷型芯不易脱芯的难题,加入一定量的淀粉作为成孔剂。以白刚玉粉为基体材料、石蜡和蜂蜡为增塑剂、二氧化硅粉和氧化镁粉为矿化剂,采用热压注法制备氧化铝基陶瓷型芯;制备工艺参数如下:浆料温度为90℃、热压注压力为0.5 MPa、保压时间为25 s;研究不同淀粉加入量对氧化铝基陶瓷型芯性能的影响。结果表明:在烧结过程中,样品中淀粉的烧失,增大了氧化铝基陶瓷型芯内部的孔隙率;随着淀粉加入量的增加,氧化铝基陶瓷型芯的室温抗弯强度降低、显气孔率增大、溶失性增大、体积密度减小;经1560℃烧结2.5 h后,淀粉加入量为8%的氧化铝基陶瓷型芯综合性能最好,其室温抗弯强度为24.8 MPa、显气孔率为47.98%、溶失性为1.92 g/h、体积密度为1.88 g/cm3。  相似文献   

13.
For high-efficiency grinding of difficult-to-cut materials such as titanium and nickel alloys, a high porosity is expected and also a sufficient mechanical strength to satisfy the function.However, the porosity increase is a disadvantage to the mechanical strength. As a promising pore forming agent, alumina bubbles are firstly induced into the abrasive layer to fabricate porous cubic boron nitride(CBN) wheels. When the wheel porosity reaches 45%, the bending strength is still high up to 50 MPa with modified orderly pore distribution. A porous CBN wheel was fabricated with a total porosity around 30%. The grinding performance of the porous composite-bonded CBN wheel was evaluated in terms of specific force, specific grinding energy, and grinding temperature, which were better than those of the vitrified one under the same grinding conditions. Compared to the vitrified CBN wheel, clear straight cutting grooves and less chip adhesion are observed on the ground surface and there is also no extensive loading on the wheel surface after grinding.  相似文献   

14.
氮化物基陶瓷高温透波材料的研究进展   总被引:1,自引:0,他引:1  
氮化物基陶瓷材料具有高强度、高模量、耐高温、抗热震和透波等优异的综合性能,是高温透波构件的主要候选材料,目前应用报道较少,制备工艺和性能有待进一步完善和提高。本文综述了氮化物陶瓷、氮化物复相陶瓷及氮化物陶瓷基复合材料的研究现状,发现多孔氮化硅陶瓷、BN-Si3N4复相陶瓷和BNw/Si3N4复合材料的综合性能较为优异,可达到介电常数低于5,介电损耗低于0.01,室温弯曲强度高于200 MPa的水平。本文分析了氮化物基陶瓷高温透波材料研究的现存问题,主要是力学性能与介电性能难以协同提高;最后对高温透波材料体系的选择及其制备工艺的未来发展方向进行了展望。  相似文献   

15.
研究了多孔毛细陶瓷试棒的燃油渗透、蒸发性能与温度、气孔率及气流速度的关系,并对单直毛细孔的渗透、蒸发及裂解等模型作了分析。  相似文献   

16.
蔡立成  钱诗梦  汪海晋  丁会明  徐强 《航空学报》2021,42(2):423821-423821
为了探究铺放工艺参数的变化对复合材料厚度方向力学行为的影响,通过面外拉伸实验分析了铺放压力与铺放温度对复合材料厚度方向面外拉伸强度与拉伸模量的影响,并对不同铺放工艺的试件失效模式进行了分析。试验结果表明,增大铺放压力会减小层间富树脂区厚度,使复合材料面外拉伸强度不断增大,当铺放压力为0.225 MPa时取得实验组最大值,与铺放压力0.075 MPa相较强度提升约13.1%,失效模式由纤维断裂与纤维层剥离的组合转变为纤维断裂;铺放压力的进一步增大会挤压层间树脂,改变树脂富集形态,使面外拉伸强度下降,剥离失效模式再度出现。实验用复合材料的适宜铺放温度为30℃,过高的铺放温度会导致孔隙率的上升,使复合材料的面外拉伸强度严重下降,裂纹扩展失去规律性;与铺放温度25℃相比,铺放温度为45℃时复合材料面外拉伸强度下降达19.2%,失效模式由纤维断裂与纤维层剥离的组合失效转化为单一的纤维层剥离失效。  相似文献   

17.
以发汗冷却技术为背景,采用D3Q19格子玻尔兹曼方法程序,在孔隙尺度下研究了多孔介质结构对结构温度场的影响。针对球形颗粒堆积结构和随机结构这两种常用的多孔结构,分别计算分析了渗透率和固体温度分布。结果表明:对于颗粒堆积结构,当颗粒规则排列时,其固体温度分布呈明显的阶梯状;而颗粒无规则排列时,固体温度变化趋势比较平稳,并且随着颗粒直径的增大,渗透率增大,固体温度降低。对于随机多孔结构,随着孔隙尺寸减小,渗透率减小,固体温度升高。在0.3~0.5的孔隙率范围内,颗粒堆积结构和随机结构由于内部对流换热强度的不同,固体温度具有不同的变化特点。  相似文献   

18.
陶瓷基复合材料螺栓渐进损伤计算与强度预测   总被引:1,自引:1,他引:0       下载免费PDF全文
为了准确预测陶瓷基复合材料螺栓的强度及损伤演化过程,建立了陶瓷基复合材料螺栓有限元模型,并采用渐进损伤模型实现了陶瓷基复合材料螺栓的失效分析,形成通用有效的陶瓷基复合材料结构渐进损伤有限元仿真方法。计算结果表明:陶瓷基复合材料螺栓在载荷1129N时萌生损伤。加载到失效载荷(1459N)时,损伤沿着螺纹槽扩展至整个螺纹槽。最后,损伤从螺纹槽扩展至螺杆中心导致螺杆断裂失效。螺栓的破坏位置在螺纹接触最上面的螺纹槽处,螺栓断裂的主要原因是材料的Z向拉伸破坏。  相似文献   

19.
考虑孔隙的针刺C/SiC复合材料弹性参数计算   总被引:3,自引:3,他引:0  
基于针刺陶瓷基复合材料试件(CMCs)光学显微照片的微观型貌,并选择恰当的代表体积单元(RVE),建立了针刺陶瓷基复合材料弹性性能预测的单胞模型.考虑了孔隙率对基体和纤维束弹性性能的影响,采用混合率计算出纤维束的弹性常数,然后将纤维束和基体的弹性参数代入到单胞模型中,通过有限元法计算得到复合材料的整体弹性常数.开展了材料拉伸试验和孔隙率测定试验,测得材料的开孔孔隙率为7.33%,闭孔孔隙率为10.67%,弹性性能的计算结果与试验吻合较好,误差为3.1%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号