首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
With the help of a very simple two zone model, we demonstrate the possibility of periodic thermal relaxation (limit cycle) oscillations in the helium burning envelope of accreting neutron stars. Physically reasonable model parameters can be chosen which yield agreement with the observed features of x-ray bursts and we suggest that this limit cycle is operative in neutron stars which have an accretion rate in a specific range. For hydrogen burning a similar cycle is possible, but it operates at such high temperatures that an unrealistically large accretion rate would be required.  相似文献   

3.
While the solar convection zone is very well mixed by its turbulent motions, chemical composition gradients build up in the radiative interior due to microscopic diffusion and settling, and to nuclear burning. Standard models, which ignore any type of macroscopic transport, cannot explain the depletion of lithium in solar-type stars, as they evolve; neither do they account for the observed profile of molecular weight at the base of the solar convection zone. Such macroscopic transport can be achieved through thermally driven meridian currents, through turbulent diffusion generated by differential rotation and possibly through gravity waves. These processes transport also angular momentum, and therefore the internal rotation profile of the Sun provides a crucial test for their relative importance. So does also the behavior of tidally locked binaries, which appear to destroy less lithium than single stars of the same mass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Vauclair  S. 《Space Science Reviews》1998,84(1-2):265-271
The process of element segregation in stars (also called "microscopic diffusion") has to be introduced in all computations of stellar structure to obtain consistent models. Although recognized by the pioneers of stellar physics, this process has long been forgotten, except for white dwarfs and for the so-called "chemically peculiar stars". More recently helioseismology has given evidence that this process occurs in the Sun, and leads to helium and heavier element depletion by about 20 percent. Some macroscopic motions (mild mixing) must also occur below the convection zone in order to account for the lithium depletion. These motions do not prevent the segregation : they only slightly smooth the abundance gradients. These results are presented here and the connexion with the 3He abundance is discussed. The importance of these processes for Pop II stars is also developped.  相似文献   

5.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

6.
平流层浮空器保压指标对驻空性能的影响   总被引:1,自引:1,他引:0  
地面保压试验是综合评估囊体材料性能的重要手段,其设计指标将影响平流层浮空器总体驻空高度与时间的变化范围。以球形超压平流层浮空器为例,建立了驻空高度运动学模型、热力学模型及基于微孔损伤的氦气渗透模型,综合考虑驻空过程中力、热耦合引起的浮空器内部氦气压力、温度和质量等的实时变化,以囊体材料微孔当量直径为桥梁建立了平流层浮空器地面保压指标与驻空高度、驻空时间的耦合关系,通过定量分析不同保压指标下浮空器驻空性能的变化情况,提取影响规律,为保压指标的合理设计提供总体参考。  相似文献   

7.
We firstly examine the critical model assumptions for massive stars, in particular regarding mixing, mass loss and metallicity. The comparisons of models and observations for main sequence stars reveal some interesting problems, such as the lack of O-stars close to the zero-age sequence, the so-called helium and mass discrepancies. We emphasize that this last discrepancy was probably due to the unsafe atmosphere modelling used by spectroscopists. The comparisons for supergiants enlighten a number of most interesting problems: the He and CNO abundances in blue supergiants, the distribution of supergiants in the HR diagram and above all the variations of the blue to red number ratios with metallicity. Then, we examine the properties and chemistry of WR stars and the observations and interpretations concerning the great changes of WR numbers in galaxies of different metallicites. Finally, we emphasize the main WR filiations.  相似文献   

8.
In order to accurately predict the heat and mass transfer behaviors and analyze key factors affecting pressurization process in the hydrogen tank, a comprehensive 2 D axial symmetry Volume-Of-Fluid(VOF) model is established by Computational Fluid Dynamics(CFD) method.The effects of phase change, turbulence and mass diffusion are included in the model and relationships between physical properties and temperature are also comprehensively considered. The phase change model is based on Hertz-Knudsen equation and the mass transfer time relaxation factor is determined by the NASA's experimental data. The mass diffusion model is included in gaseous helium pressurizing. The key factors including the inlet temperature, inlet mass flow rate, injector types and pressurizing gas kinds are quantitatively analyzed. Compared with the experiment, the simulation results show that the deviation of pressurizing gas mass consumption, condensing mass and ullage temperature are 3.0%, 7.5% and 4.0% respectively. The temperature stratification is existed along the axial direction in the surface liquid region and the ullage region, and the bulk liquid is in subcooled state during pressurizing. The location of phase change mainly appears near the vapor–liquid interface, and the mass transfer expressing as condensation or vaporization is mainly determined by the heat convection and molecular concentration near the vapor–liquid interface.The key factors show that increasing the inlet temperature and inlet mass flow rate could shorten the pressurizing time interval and save the pressurizing gas mass. The proportion of the total energy addition of the tank absorbed by the ullage region, the liquid region and the tank wall respectively is greatly influenced by the injector types and more heat transferred into the ullage would result in a faster pressure rising rate. Gaseous hydrogen pressurization has a higher efficiency than gaseous helium pressurization. The simulation results presented in this paper can be used as a reference for design optimization of the pressurization systems of cryogenic liquid launch vehicles so as to save the mass of pressurizing gases and shorten the pressurizing time interval.  相似文献   

9.
《中国航空学报》2021,34(4):403-415
A forced ignition probability analysis method is developed for turbulent combustion, in which kernel formation is analyzed with local kernel formation criteria, and flame propagation and stabilization are simulated with Lagrangian flame particle tracking. For kernel formation, the effect of turbulent scalar transport on flammability is modelled through the incorporation of turbulence-induced diffusion in a spherically outwardly propagating flame kernel model. The dependence of flammability limits on turbulent intensities is tabulated and serves as the flammability criterion for kernel formation. For Lagrangian flame particle tracking, flame particles are tracked in a structured grid with flow fields being interpolated from a Computational Fluid Dynamics (CFD) solution. The particle velocity follows a Langevin model consisting of a linear drift and an isotropic diffusion term. The Karlovitz number is employed for the extinction criterion, which compares chemical and turbulent timescales. The integration of the above two-step analysis approach with non-reacting CFD is achieved through a general interpolation interface suitable for general unstructured CFD grids. The method is demonstrated for a methane/air bluff-body flame, in which flow and fuel/air mixing characteristics are extracted from a non-reacting simulation. Results show that the computed ignition probability map agrees qualitatively with experimental results. A reduction of the ignition probability in the recirculation zone and a high ignition probability on the shear layer of the recirculation zone near the mean stoichiometric surface are well captured. The tools can facilitate optimization of spark placement and offer insights into ignition processes.  相似文献   

10.
回流燃烧湍流流场激光可视化实验   总被引:7,自引:1,他引:6  
实验测量了钝体后丙烷/空气湍流扩散燃烧流场及其对应的冷态流场,分析了两种流场的异同点。利用粒子图像速度场测量(PIV)技术对4种不同工况的冷热态流场进行了测量,得到了燃烧火焰内部的速度场和相应工况下的冷态速度场。结果表明,冷热态流场的速度分布总体相似,但与冷态流场相比,燃烧状态下流场回流区的中心位置升高,长度增加,最大回流速度减小,速度场变得相对紊乱。实验表明,在对湍流扩散燃烧流场作深入研究时,仅利用冷态实验来模拟燃烧状况是不能满足要求的。   相似文献   

11.
12.
One of the most powerful tests of the stellar evolution theory is analysis of stars' atmospheric chemical composition. It has shown that some non-standard mixing different from ordinary convection, semiconvection and convective overshooting seems to occur in stellar interiors. In the present study Zahn's rotationally induced turbulent diffusion is assumed to be responsible for such kind of mixing. We compare results of our evolutionary calculations with available observational data for massive main-sequence stars and red giants in globular clusters.  相似文献   

13.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds.  相似文献   

14.
The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the 2D conservation laws with a 2D finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required.Our core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. Our results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.  相似文献   

15.
Supernova mechanisms in accreting white dwarfs (WDs) are presented, i.e., the carbon deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the WD. The various types of hydrogen shell-burning in the presupernova stage are also discussed.on leave from Department of Physics, Ibaraki University, Japan.  相似文献   

16.
目前炉内两相流动和煤粉燃烧数值模拟中多半用颗粒随机轨道模型和单流体无滑移模型,这些模型都难以完整地给出三维空间内颗粒速度,浓度,湍流度分布的信息。主采用双流体-轨道模型(颗粒相连续介质-轨道模型)对一个四角喷燃模型炉内三维湍流两相流动及煤粉燃烧进行了模拟。此模型基于欧拉气相方程组、欧拉颗粒连续方程组和动量方程组以及拉氏颗粒能量方程和质量变化的方程,并使用k-ε-kp两相湍流模型,EBU-Arrhenius湍流燃烧模型,离散坐标辐射传热模型,煤粉颗粒的水分蒸发,热解挥发模型和焦炭燃烧的扩散-动力模型等。热态模拟中,为了减小为信散造成的影响,采用了扭转坐标法(将坐标扭转一定的角度使之与煤粉射流方程一致)。为了检验数值模拟,采用三维相位移普勒测速仪(PDPA)对于冷态模型炉内湍流两相流场进行了测量,得到了两相速度,湍流脉动及颗粒浓度的分布。分别对冷态模炉内两相流动和热态模型炉内三维两相流动和煤粉进行了模拟,冷态两相流动的计算与实验结果的对比表明预报的两相流场是合理的,热态模拟的结果给两相速度,气相温度、组分浓度及壁面热,显示出靠近出口处气相速度和温度分布不对称,造成一个局部高温区。  相似文献   

17.
We discuss evolutionary processes in binaries where the primary becomes a red giant with a deep convective envelope before it fills its Roche lobe. Such binaries (late Case B or late Case C, if they evolve conservatively) ought to suffer drastic mass transfer, on a hydrodynamic timescale. In some circumstances this may lead to a common envelope, spiral-in, and finally either a very short-period binary or coalescence. But there appear to be other circumstances in which the outcome is an ordinary Algol, or a wide binary with a white dwarf companion as in Barium stars and some symbiotics. We try to demonstrate that stellar-wind mass loss, enhanced one or two orders of magnitude by tidal interaction with a companion, can vitally affect the approach to RLOF, and indeed may prevent RLOF in binaries with periods over 1000 d. Such mass loss is probably accompanied by angular momentum loss, by magnetic braking combined with tidal friction. The result is that it will not be easy to predict definitively the outcome of evolution in a given zero-age binary.  相似文献   

18.
We discuss evolutionary processes in binaries where the primary becomes a red giant with a deep convective envelope before it fills its Roche lobe. Such binaries (late Case B or late Case C, if they evolve conservatively) ought to suffer drastic mass transfer, on a hydrodynamic timescale. In some circumstances this may lead to a common envelope, spiral-in, and finally either a very short-period binary or coalescence. But there appear to be other circumstances in which the outcome is an ordinary Algol, or a wide binary with a white dwarf companion as in Barium stars and some symbiotics. We try to demonstrate that stellar-wind mass loss, enhanced one or two orders of magnitude by tidal interaction with a companion, can vitally affect the approach to RLOF, and indeed may prevent RLOF in binaries with periods over 1000 d. Such mass loss is probably accompanied by angular momentum loss, by magnetic braking combined with tidal friction. The result is that it will not be easy to predict definitively the outcome of evolution in a given zero-age binary.  相似文献   

19.
刘朋欣  袁先旭  梁飞  李辰  孙东 《航空学报》2021,42(z1):726338-726338
高超声速飞行器在较低空域以极高马赫数飞行时,表面会同时存在湍流与化学非平衡流动,但目前针对此类高温化学非平衡湍流边界层流动特性的研究工作还比较有限,对不同湍流特征的主导流动机制的认识还有待于进一步深入。选取高超声速楔形体头部斜激波后的流动状态,设置3种不同的壁面温度,通过直接数值模拟对比了不同壁温条件下的边界层参数分布特性,并采用象限分解技术分析了边界层不同象限流动事件对雷诺剪切应力、湍流热流、湍流质量扩散的贡献。结果显示:在整个边界层中上抛和下扫运动对雷诺剪切应力的贡献占优;冷壁效应会使得流向和法向湍流热流通量的主导流动事件在温度峰值两侧发生改变。O原子组分流向湍流组分扩散主要受到高质量分数流体慢速运动事件和低质量分数流体快速运动事件的影响,而法向湍流组分扩散则主要受到高质量分数流体向上运动事件和低质量分数流体向下运动事件的影响。  相似文献   

20.
The current status of the theory of a new astrophysical phenomenon, aradiation-driven diskon, is outlined.The cyclotron radiation pressure around sufficiently hot, strongly magnetized white dwarfs and neutron stars is shown to be able to drive a wind from the photosphere and support a plasma envelope in the closed part of the magnetosphere. The magnetohydrostatic configuration of an optically thin, radiatively supported plasma envelope is determined. It consists of an equatorial disk in the region where the cyclotron radiation force exceeds the local force of gravity and a closed shell near the equilibrium surface where the radiation pressure equals gravity. The effects of finite optical depth on the behaviour of the magnetospheric plasma and the influence of the envelope on the observed radiation are discussed.Classes of magnetic degenerate stars are pointed out in which radiation-driven diskons may be found. The best candidates are two individual stars, the strongly magnetized white dwarfs GD 229 and PG 1031+234. Both exhibit broad and deep depressions in the ultraviolet which are explained as a result of cyclotron scattering by an optically thick radiation-driven envelope in the inhomogeneous magnetic field of the star. We predict a temporal and spectral variability of these features due to non-stationary plasma motions in the envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号