首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Vauclair  S. 《Space Science Reviews》1998,84(1-2):265-271
The process of element segregation in stars (also called "microscopic diffusion") has to be introduced in all computations of stellar structure to obtain consistent models. Although recognized by the pioneers of stellar physics, this process has long been forgotten, except for white dwarfs and for the so-called "chemically peculiar stars". More recently helioseismology has given evidence that this process occurs in the Sun, and leads to helium and heavier element depletion by about 20 percent. Some macroscopic motions (mild mixing) must also occur below the convection zone in order to account for the lithium depletion. These motions do not prevent the segregation : they only slightly smooth the abundance gradients. These results are presented here and the connexion with the 3He abundance is discussed. The importance of these processes for Pop II stars is also developped.  相似文献   

2.
3.
This article reviews solar and stellar seismology, with emphasis on the enormous progress which has been made recently in the observation and understanding of solar p-modes. Precision measurements of p-mode frequencies and frequency splittings allow a greater understanding of the structure of the solar interior, while p-mode amplitudes and linewidths shed light on the mode excitation mechanism, which is probably stochastic excitation by turbulent convection. The prospects for making similar measurements on other stars are also discussed.  相似文献   

4.
The Solar Dynamo   总被引:1,自引:0,他引:1  
It is generally accepted that the strong toroidal magnetic fields that emerge through the solar surface in sunspots and active regions are formed by the action of differential rotation on a poloidal field, and then stored in or near the tachocline at the base of the Sun’s convection zone. The problem is how to explain the generation of a reversed poloidal field from this toroidal flux—a process that can be parametrised in terms of an α-effect related to some form of turbulent helicity. Here we first outline the principal patterns that have to be explained: the 11-year activity cycle, the 22-year magnetic cycle and the longer term modulation of cyclic activity, associated with grand maxima and minima. Then we summarise what has been learnt from helioseismology about the Sun’s internal structure and rotation that may be relevant to our subject. The ingredients of mean-field dynamo models are differential rotation, meridional circulation, turbulent diffusion, flux pumping and the α-effect: in various combinations they can reproduce the principal features that are observed. To proceed further, it is necessary to rely on large-scale computation and we summarise the current state of play.  相似文献   

5.
A model for massive main sequence (MS) stars is proposed that quantitatively accounts for the mass and helium discrepancies in luminous OB stars. The radiative envelope of the model consists of two zones being mixed by rotationally induced turbulent diffusion during the star's evolution on the MS. The rate of the mixing in the outer zone is assumed to be substantially lower than that in the inner zone. Both, the mass and helium discrepancy, are shown to be due to helium enrichment in the envelope produced by turbulent diffusion. Some arguments to support this double-zone stellar model are given.Alexander von Humboldt Fellow  相似文献   

6.
We discuss the current theoretical understanding of the large scale flows observed in the solar convection zone, namely the differential rotation and meridional circulation. Based on multi-D numerical simulations we describe which physical processes are at the origin of these large scale flows, how they are maintained and what sets their unique profiles. We also discuss how dynamo generated magnetic field may influence such a delicate dynamical balance and lead to a temporal modulation of the amplitude and profiles of the solar large scale flows.  相似文献   

7.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

8.
One of the most powerful tests of the stellar evolution theory is analysis of stars' atmospheric chemical composition. It has shown that some non-standard mixing different from ordinary convection, semiconvection and convective overshooting seems to occur in stellar interiors. In the present study Zahn's rotationally induced turbulent diffusion is assumed to be responsible for such kind of mixing. We compare results of our evolutionary calculations with available observational data for massive main-sequence stars and red giants in globular clusters.  相似文献   

9.
10.
Fisk  L.A.  Schwadron  N.A. 《Space Science Reviews》2001,97(1-4):33-33
A theory is presented for the origin of the solar wind, which is based on the behavior of the magnetic field of the Sun. The magnetic field of the Sun can be considered as having two distinct components: Open magnetic flux in which the field lines remain attached to the Sun and are dragged outward into the heliosphere with the solar wind. Closed magnetic flux in which the field remains entirely attached to the Sun, and forms loops and active regions in the solar corona. It is argued that the total open flux should tend to be constant in time, since it can be destroyed only if open flux of opposite polarity reconnect, a process that may be unlikely since the open flux is ordered into large-scale regions of uniform polarity. The behavior of open flux is thus governed by its motion on the solar surface. The motion may be due primarily to a diffusive process that results from open field lines reconnecting with randomly oriented closed loops, and also due to the usual convective motions on the solar surface such as differential rotation. The diffusion process needs to be described by a diffusion equation appropriate for transport by an external medium, which is different from the usual diffusion coefficient used in energetic particle transport. The loops required for the diffusion have been identified in recent observations of the Sun, and have properties, both in size and composition, consistent with their use in the model. The diffusive process, in which reconnection occurs between open field lines and loops, is responsible for the input of mass and energy into the solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Based on radiation hydrodynamics modeling of stellar convection zones, a diffusion scheme has been devised describing the downward penetration of convective motions beyond the Schwarzschild boundary (overshoot) into the radiative interior. This scheme of exponential diffusive overshoot has already been successfully applied to AGB stars. Here we present an application to the Sun in order to determine the time scale and depth extent of this additional mixing, i.e. diffusive overshoot at the base of the convective envelope. We calculated the associated destruction of lithium during the evolution towards and on the main-sequence. We found that the slow-mixing processes induced by the diffusive overshoot may lead to a substantial depletion of lithium during the Sun's main-sequence evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Chang  Tom  Tam  Sunny W.Y.  Wu  Cheng-Chin  Consolini  Giuseppe 《Space Science Reviews》2003,107(1-2):425-445
The first definitive observation that provided convincing evidence indicating certain turbulent space plasma processes are in states of ‘complexity’ was the discovery of the apparent power-law probability distribution of solar flare intensities. Recent statistical studies of complexity in space plasmas came from the AE index, UVI auroral imagery, and in-situ measurements related to the dynamics of the plasma sheet in the Earth's magnetotail and the auroral zone. In this review, we describe a theory of dynamical ‘complexity’ for space plasma systems far from equilibrium. We demonstrate that the sporadic and localized interactions of magnetic coherent structures are the origin of ‘complexity’ in space plasmas. Such interactions generate the anomalous diffusion, transport, acceleration, and evolution of the macroscopic states of the overall dynamical systems. Several illustrative examples are considered. These include: the dynamical multi- and cross-scale interactions of the macro-and kinetic coherent structures in a sheared magnetic field geometry, the preferential acceleration of the bursty bulk flows in the plasma sheet, and the onset of ‘fluctuation induced nonlinear instabilities’ that can lead to magnetic reconfigurations. The technique of dynamical renormalization group is introduced and applied to the study of two-dimensional intermittent MHD fluctuations and an analogous modified forest-fire model exhibiting forced and/or self-organized criticality [FSOC] and other types of topological phase transitions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Helioseismology uses solar p-mode oscillations to probe the structure of the solar interior. The modifications of p-mode properties due to the presence of solar magnetic fields provide information on the magnetic fields in the solar interior. Here we review some of results in helioseismology on the magnetic fields in the solar convection zone. We will also discuss a recent result on the magnetic fields at the base of the convection zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The equation of state is one of the three fundamental ingredients used to construct stellar models. The plasma of the interiors of stars such as the Sun is only slightly non-ideal. However, the extraordinary accuracy of the helioseismological data requires refined equations of state. It turned out to be necessary to include a Coulomb correction, commonly evaluated in the Debye-Hückel approximation. Higher-order non-ideal effects have implications as well, both for plasma physics and for solar physics. As a typical example, the recently studied thermodynamic consequence of excited states in compound particles is discussed. This effect is of considerable relevance in the helioseismic determination of the helium abundance in the solar convection zone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
《中国航空学报》2021,34(4):403-415
A forced ignition probability analysis method is developed for turbulent combustion, in which kernel formation is analyzed with local kernel formation criteria, and flame propagation and stabilization are simulated with Lagrangian flame particle tracking. For kernel formation, the effect of turbulent scalar transport on flammability is modelled through the incorporation of turbulence-induced diffusion in a spherically outwardly propagating flame kernel model. The dependence of flammability limits on turbulent intensities is tabulated and serves as the flammability criterion for kernel formation. For Lagrangian flame particle tracking, flame particles are tracked in a structured grid with flow fields being interpolated from a Computational Fluid Dynamics (CFD) solution. The particle velocity follows a Langevin model consisting of a linear drift and an isotropic diffusion term. The Karlovitz number is employed for the extinction criterion, which compares chemical and turbulent timescales. The integration of the above two-step analysis approach with non-reacting CFD is achieved through a general interpolation interface suitable for general unstructured CFD grids. The method is demonstrated for a methane/air bluff-body flame, in which flow and fuel/air mixing characteristics are extracted from a non-reacting simulation. Results show that the computed ignition probability map agrees qualitatively with experimental results. A reduction of the ignition probability in the recirculation zone and a high ignition probability on the shear layer of the recirculation zone near the mean stoichiometric surface are well captured. The tools can facilitate optimization of spark placement and offer insights into ignition processes.  相似文献   

16.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

17.
We review the mechanisms which are thought to provide steady heating of chromospheres and coronae. It appears now fairly well established that nonmagnetic chromospheric regions of latetype stars are heated by shock dissipation of acoustic waves which are generated in the stellar surface convection zones. In the case of late-type giants there is additional heating by shocks from pulsational waves. For slowly rotating stars, which have weak or no magnetic fields, these two are the dominant chromospheric heating mechanisms.Except for F-stars, the chromospheric heating of rapidly rotating late-type stars is dominated by magnetic heating either through MHD wave dissipation (AC mechanisms) or through magnetic field dissipation (DC mechanisms). The MHD wave and magnetic field energy comes from fluid motions in the stellar convection zones. Waves are also generated by reconnective events at chromospheric and coronal heights. The high-frequency part of the motion spectrum leads to AC heating, the low frequency part to DC heating. The coronae are almost exclusively heated by magnetic mechanisms. It is not possible to say at the moment whether AC or DC mechanisms are dominant, although presently the DC mechanisms (e.g., nanoflares) appear to be the more important. Only a more detailed study of the formation of and the dissipation in small-scale structures can answer this question.The X-ray emission in early-type stars shows the presence of coronal structures which are very different from those in late-type stars. This emission apparently arises in the hot post-shock regions of gas blobs which are accelerated in the stellar wind by the intense radiation field of these stars.  相似文献   

18.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

19.
The OPAL monochromatic opacity tables are used to evaluate the impact of a non-standard chemical composition on solar models. A calibrated solar model with consistent diffusion including the effect of radiative forces and ionization on drift velocities is presented. It is shown that surface abundances are predicted to change slightly more than in traditional solar models where these refinements are not included. All elements included in the model settle at similar rates which is reflected in the relative variation in surface abundances ranging from 7.5% for calcium to 8.8% for argon. The structural difference between the consistent model and the traditional model is small, with a maximum effect of 0.3% for the isothermal sound speed at the base of the convection zone. The settling of CNO is only marginally affected. Opacity profiles have also been calculated with varying abundances for volatile elements, for which the abundances are poorly known, and other selected elements. It is shown that if one allows a 10% variation of these elements individually one can expect a peak Rosseland mean opacity variation of 3% for oxygen, a little less 2% for Si and Ne, and around 1% for Mg and S in the radiative zone. Other light metals and volatile elements have no significant impact on the opacity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Recent discoveries of planets orbiting several nearby solar-mass stars have focussed renewed attention on the frequency and evolution of planetary systems and their evolutionary precursors around both solar and intermediate (2 M/M 8) mass stars. As a result of a wealth of new observations at all wavelengths of the circumstellar material around the nearest of the young intermediate-mass stars, the so-called Herbig Ae/Be (HAeBe) stars, we are beginning to see how these systems are similar to the solar mass objects, and how they differ. A review of the recent literature is presented, including the evolutionary status of the stars, binary frequency and the star forming environment, the morphology of the circumstellar material, including the first direct detections of disks in Keplerian rotation around these objects, and mass loss and infall phenomena. Prospects for advances in this research area as a result of advances in instrumentation are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号