首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
星间DOWRT中的相对论效应分析与修正   总被引:1,自引:1,他引:0  
推导了双向单程测距与时间同步(DOWRT,Dual One-Way Ranging/Time Synchronization)的解耦方程,分析了空间动态下DOWRT法的计算方法及相对论效应在测距和时间比对中的影响,提出了带有相对论效应修正的DOWRT算法,最后分别仿真分析了低轨编队飞行卫星和导航星座中的距离与时间同步测量中相对论效应引起的误差.结果表明:卫星间采用DOWRT测量方法时,由相对论效应引起的低轨短基线编队飞行卫星间距离测量误差为米级、时间同步误差为亚皮秒级,而在导航星座测量中引起近百米级距离测量误差和高达微秒级的时间同步误差.因此为了实现导航卫星间高精度距离与时间同步测量,必须进行相对论效应修正.  相似文献   

2.
将广义相对论中的惯性系概念引入惯性导航,根据后牛顿引力理论,提出一种新的航天器惯性导航模型.以地球周围的测地运动物体为随动惯性参考系,利用航天器机载加速度计测量的比力和引力梯度作为观测量,通过求解航天器相对于随动惯性系的状态量达到导航定位目的.该方法用于高轨卫星时可以获得较高的测量精度,误差主要来源于惯性元件的测量以及随动惯性系测地轨迹设计,不存在现有惯性导航模型中随时间而累积的误差.  相似文献   

3.
两种J_2摄动模型下卫星编队相对位置误差分析   总被引:1,自引:0,他引:1  
为了研究一个轨道周期内卫星和卫星编队的运动规律,在J2摄动理论基础之上,采用摄动加速度分析方法,给出了J2瞬时摄动模型。以近地太阳同步轨道卫星和双星编队为例,与只考虑J2一阶长期项的平均摄动模型比较,仿真分析结果表明,对卫星而言,一个轨道周期内,卫星半长轴相对平均半长轴漂移达到18km,偏心率相对平均偏心率漂移达到10-3量级,轨道倾角相对平均轨道倾角漂移达到0.01°,即由于J2瞬时摄动的影响,卫星运动发生了摄动;对双星编队而言,一个轨道周期内,两星相对位置的径向误差达到5km,沿迹向误差达到19km,法向误差相对较小,在10-2量级上,相对距离的误差达到了19km,随着时间的推移,误差会越来越大。  相似文献   

4.
基于摄动轨道的卫星自主天文导航仿真研究   总被引:5,自引:0,他引:5  
针对星光折射间接敏感地平的卫星自主天文导航方法 ,利用推广的卡尔曼滤波方法进行仿真研究。为了准确建立运动模型 ,在系统方程中引入了非球形地球引力中的二阶带谐项 ;在考虑具有指数密度的球状分层大气的基础上 ,建立了以星光视高度为观测量的量测方程。在建立了推广的卡尔曼滤波方程后 ,文章进行了计算机仿真 ,并对仿真结果进行了详细的误差分析 ,结果表明基于摄动轨道的星光折射间接敏感地平的卫星自主天文导航方法能取得较高的导航精度  相似文献   

5.
为提高导航卫星精密定轨与轨道预报精度,提出了一种导航卫星太阳光压摄动的分析建模方法.相较于其他摄动因素模型完善且精度较高,光压摄动由于太阳活动导致太阳能量误差、卫星姿态控制误差和表面材料老化等问题,是最难以精确建模的摄动源,也是动力学模型最大的误差源.基于此,提出了一种基于卫星的姿态控制规律,通过分析法建立卫星太阳光压摄动模型,给出了光压摄动加速度在星体坐标系中的模型,并以GPSBlock IIR为例进行了验证.计算结果表明,该仿真分析法所建立的摄动模型与T30模型、ECOM模型精度接近,达到了光压建模研究的初步计算要求.  相似文献   

6.
远程运动对象常选地平坐标系为导航系,短航程的对象可选切平面惯性坐标系为导航系。本文推导了切平面惯性系统的导航误差方程;作为应用研究进行了误差分析,建立了精度与惯导装置误差源的解析联系。由于地球自转会引入误差,本文讨论了补偿地球自转的修正方法。  相似文献   

7.
星地无线电双向法时间比对计算模型及其误差评估   总被引:1,自引:0,他引:1  
卫星导航定位系统测距的基础是测时,而定轨和定位的前提是各观测量的时间同步。因此,时间同步技术是卫星导航定位系统建设的关键技术基础之一。根据星地无线电双向法时间同步技术的基本原理,详细推导了其在地心惯性系中的基本计算模型,并以静止地球同步轨道卫星为例,分析了该计算模型中的距离改正项时延对星地间相对钟差的影响量级。  相似文献   

8.
SINS快速传递对准建模与仿真   总被引:1,自引:0,他引:1  
针对空间武器捷联惯性导航系统SINS(Strapdown Inertial Navigation System)动基座快速、精确初始对准问题,建立了空间环境下武器SINS的动基座误差模型,并考虑武器SINS的惯性器件误差.根据姿态传递对准原理,推导了姿态匹配方式下卫星与武器SINS姿态角之差的量测方程.在此基础上,建立了空间武器SINS传递对准的数学模型,设计一种快速对准卡尔曼滤波器.计算机仿真结果验证了该模型的有效性.在10s时间内,可获得与卫星姿态测量系统姿态精度相当的对准精度,同时还能实现武器SINS惯性器件误差的准确标定.   相似文献   

9.
圆型限制性三体问题模型忽略了摄动因素的影响,在很多情况下不能足够准确地描述三体系统的动力学性质。本文研究了考虑摄动影响的三体问题的动力学性质及其轨道设计。首先分析了运行在平动点附近的卫星所受的主要摄动因素;然后从系统在惯性坐标系中的动力学方程出发,推导了会合坐标系中考虑偏心率、第四体引力以及太阳光压摄动影响的一般动力学方程;最后使用两层微分修正方法将圆型限制性三体问题模型下设计的轨道转换到受摄三体问题模型下。  相似文献   

10.
针对基于星间相对测量的相对导航算法中由测量方程将相对轨道拟平根数转化为相对位置过程导致的模型非线性,提出一种基于约化相对轨道拟平根数的卫星编队导航方法.该方法通过编队卫星之间一段时间的切向漂移估计半长轴偏差,合理处理半长轴偏差对双星相对动力学的影响,克服了模型线性化造成的误差,能够实现长期稳定的高精度卫星编队导航.  相似文献   

11.
地磁场具有完整的数学模型,而地磁场矢量是卫星的位置矢量函数,利用地磁场测量可以实现近地卫星的自主导航。首先建立近地卫星的高精度轨道动力学模型,提出基于星敏感器与磁强计相结合的自主导航算法,利用星敏感器输出高精度的姿态信息,同时恒星星光矢量与地磁场矢量组成两种观测模式,采用联合滤波算法对系统进行数值仿真,并对滤波算法的收敛性和仿真结果的精度进行了分析。通过对数值仿真结果的分析证实了该方案具有良好的鲁棒性和容错性。  相似文献   

12.
基于GLONASS星历的预报轨道的误差分析   总被引:1,自引:0,他引:1  
推导了协议地球坐标系下的卫星运动方程.通过分析由GLONASS(Global Navigation Satellite System)广播星历参数确定的卫星预报轨道的拟合精度,指出了摄动力模型的简化、积分器的选择,以及忽略了极移影响等因素是引起拟合误差的主要因素,其中摄动力模型的简化起最主要的作用.通过对卫星轨道运动方程积分30?min,可知由摄动力模型的简化、积分器和忽略极移影响等因素引起的拟合误差分别为0.827?m,0.224?m和0.025?m.要提高预报轨道拟合的精度,关键是要对摄动力简化特别是地球引力摄动高阶项的截断以及日月引力场简化造成的轨道预报精度损失加以控制.  相似文献   

13.
以脉冲星导航技术为背景,讨论了空间计量理论中时间测量的关键问题。首先介绍了脉冲星导航的基本原理,和不同坐标系之间的时间尺度转换,比较了不同坐标系时间轴度规对脉冲星的脉冲轮廓测量的影响,说明只有太阳系质心坐标时能够正确测量脉冲轮廓。进而介绍了空间计量提出的两种时间统一的模式:地球卫星导航模式和脉冲星导航模式。以脉冲星导航为例,讨论了基于SI秒绝对定义和太阳系质心坐标时的广域时间统一的方法,给出用航天器原时坐标轴伸缩法修正多普勒效应的公式。最后提出在大尺度广域时空中构建新的守时系统—太阳系质心守时系统的设计思路。  相似文献   

14.
以脉冲星导航技术为背景,讨论了空间计量理论中时间测量的关键问题。首先介绍了脉冲星导航的基本原理,和不同坐标系之间的时间尺度转换,比较了不同坐标系时间轴度规对脉冲星的脉冲轮廓测量的影响,说明只有太阳系质心坐标时能够正确测量脉冲轮廓。进而介绍了空间计量提出的两种时间统一的模式:地球卫星导航模式和脉冲星导航模式。以脉冲星导航为例,讨论了基于SI秒绝对定义和太阳系质心坐标时的广域时间统一的方法,给出用航天器原时坐标轴伸缩法修正多普勒效应的公式。最后提出在大尺度广域时空中构建新的守时系统—太阳系质心守时系统的设计思路。  相似文献   

15.
对于非合作目标,由于中远距离星上相对测量手段有限,大多情况仅能获得视线角信息.仅视线测量相对导航方法在GEO轨道条件下滤波精度低、可观测性差.提出一种基于星间视线方位测量和轨道预报信息结合的非合作目标相对导航方法.建立基于星间相对运动模型的状态方程和基于星间视线测量和轨道预报信息的观测方程,分别选取了扩展卡尔曼滤波和无迹卡尔曼滤波两种方法,仿真分析了轨道预报信息精度和滤波方法对导航精度的影响.  相似文献   

16.
在航天器相对导航过程中,相对距离测量信息容易受到干扰,测量误差有较大的不确定性,通常基于单一模型的滤波算法无法对噪声进行辨识,很难获得精确的导航结果。针对应用Clohessy-Wiltshire(C-W)方程受到圆轨道假设的限制问题,研究了建立在惯性坐标系下的近距离相对运动方程(Lawden方程),建立了基于这两个方程的模型集。根据导航系统测量敏感器的特点,设计基于Rodrigues参数及无迹卡尔曼滤波(UKF)的交互式多模型(IMM)视觉相对位姿动态估计算法(IMM-UKF),在保证计算效率的前提下,确保相对轨道姿态确定的稳定性和精确性。数值仿真验证了算法的有效性和先进性。  相似文献   

17.
针对超低轨道地球卫星导航自主需求,提出了一种脉冲星/星光折射/光谱测速组合天文导航方法。首先根据地球超低轨道卫星运行轨道动力学方程建立导航系统状态模型;分别根据脉冲到达时间差和星光折射角与天体光谱频率建立导航系统量测模型;使用Unscented卡尔曼滤波方法,降低随机误差对导航精度的影响,使用基于UKF的信息融合方法,有效融合了三种天文导航方法结果数据。经计算机仿真分析,该组合导航方法位置导航误差均值为85.62m,速度误差均值0.190m/s,能够满足超低轨道地球卫星在轨运行导航需求。  相似文献   

18.
Distributed X-ray pulsar-based navigation (DXNAV) is an effective method to realize earth-orbit satellite positioning under weak pulsar signal conditions. In this paper, we propose a new DXNAV method based on multiple information fusion. The DXNAV system principle and the pulse phase estimate Cramér-Rao lower bound are deduced. To suppress the calculation complexity and the error source, the X-ray pulsar photon time-of-arrival detected by each satellite is equivalently converted to the leading satellite directly using the inter-satellite link ranging and starlight angular distance measurement. A high precision estimate model of the pulse phase is built using pulsar standard profile, observed profile, and star-geocentric angular distance from distributed satellites. The estimated pulse phase is real-time supplied to the navigation system, which is established in the form of a deviation equation. The two-stage Kalman filter is designed to estimate the pulse phase in profile histogram bin step and the leader position in real-time step. Compared separately with the maximum likelihood phase estimate method and the celestial navigation method using only the star-geocentric angular distance, the simulation analysis shows that the estimation precisions of position and velocity are improved by 29% and 25%.  相似文献   

19.
    
提出了一种捷联惯性/天文/雷达高度表的弹道导弹组合导航方法。针对传统SINS/星敏感器组合无法从根本上解决惯导速度位置误差发散的问题,引入RA测量数据,以海拔计算高度与海拔观测高度的差值作为新的量测量,并推导了全微分方程,结合姿态误差角建立4维观测模型,针对弹道中段导航,以SINS误差方程作为系统状态模型,通过扩展卡尔曼滤波(EKF)进行组合导航解算。仿真结果表明,当SINS精度为惯导级、星敏感器测量精度10″、RA测量精度50 m时,经过1 810 s的飞行,再入点时刻速度误差小于1 m/s、圆概率误差(CEP)为1.2 km,比传统SINS/CNS方法速度和位置误差分别减小了76.1%和65.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号