首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588.  相似文献   

2.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules.  相似文献   

3.
The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na+ and Cl excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na+ and Cl recycling in a BLSS was designed, based on the NaCl turnover in the human–urine–nutrient solution–halophytic plant–human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na+ and Cl accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na+ and Cl absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na+ and Cl turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.  相似文献   

4.
Bioregenerative life support systems (BLSS) being considered for long duration space missions will operate with limited resupply and utilize biological systems to revitalize the atmosphere, purify water, and produce food. The presence of man-made materials, plant and microbial communities, and human activities will result in the production of volatile organic compounds (VOCs). A database of VOC production from potential BLSS crops is being developed by the Breadboard Project at Kennedy Space Center. Most research to date has focused on the development of air revitalization systems that minimize the concentration of atmospheric contaminants in a closed environment. Similar approaches are being pursued in the design of atmospheric revitalization systems in bioregenerative life support systems. in a BLSS one must consider the effect of VOC concentration on the performance of plants being used for water and atmospheric purification processes. In addition to phytotoxic responses, the impact of removing biogenic compounds from the atmosphere on BLSS function needs to be assessed. This paper provides a synopsis of criteria for setting exposure limits, gives an overview of existing information, and discusses production of biogenic compounds from plants grown in the Biomass Production Chamber at Kennedy Space Center.  相似文献   

5.
Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive.  相似文献   

6.
The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research.  相似文献   

7.
A significant amount of research has been invested into understanding the effects of including fish culture in bio-regenerative life support systems (BLSS) for long duration space habitation. While the benefits of fish culture as a sub-process for waste treatment and food production continue to be identified, other pressing issues arise that affect the overall equivalent system mass associated with fish culture in a BLSS. This paper is meant to provide insight into several issues affecting fish culture in a BLSS that will require attention in the future if fish meant for consumption are to be cultured in a BLSS.  相似文献   

8.
生物再生生命保障系统(Bioregenerative Life Support System,BLSS)是人类进行深空探测活动,实现长期载人空间飞行必需的关键技术,对于太空的探索开发具有重要意义。在BLSS系统内,航天员尿液废水的处理回收是非常重要的一部分。将尿液中所含有的大量的水分和丰富的营养物质回收用于系统内植物生长所需营养液的配制,既可以保证植物的正常生长,也有助于实现系统内物质的循环利用进而提高BLSS的闭合度。尿液中所含的大量盐分会威胁植物生长,所以需通过一定的技术手段处理尿液废水并回收其中的水分和营养。为了探索适用于BLSS中的尿液处理回收技术,首先分析了几种面向空间站应用的尿液处理技术,如蒸馏技术等;然后基于回收营养物质的需求,分析了面向民用的、发展较为成熟的尿液处理回收技术,如离子交换吸附技术、氨气吹脱技术和鸟粪石沉淀技术,并讨论了这些尿液处理回收技术在BLSS中的应用前景。最后基于BLSS的实际需求,提出了有望用于BLSS中的尿液处理回收技术流程。  相似文献   

9.
Earth based Bioregenerative Life Supporting Systems (BLSS) are subject to 4 main physical factors: gravity, light, temperature and electrical environment. The first 3 are obvious to everyone, the Electrical Environment (EE) is not under the majority of prevailing conditions perceived directly by our senses. The EE is one of the important physical factors directly influencing some plants and in a less obvious way also the majority of plants. There are only two long range forces in nature: the electromagnetic and the gravitational forces. Gravity is very much weaker than the electromagnetic forces FG/FEL=10(-38), where FG is the gravitational Force and FEL are the electromagnetic Forces. The atmospheric electric field prevails all the time over the entire Earth with a mean intensity of 130 V/m. It is therefore a potent factor which may be used by some plants exposed throughout their entire life time to the atmospheric electric field. What effect should the normal atmospheric electric field have on plants? All living plants are good electrical conductors for electrostatic fields. The plants distort the normally vertical field lines, which have to be perpendicular to the plant tissue everywhere in order to avoid the extraction of energy from the field. The meristems concentrate the field lines, thus the electrically charged nutrients are supplied to the growing parts of the plant exposed to the field. This results in electrotropism in some plants. It is very well known that plants do have adaptive capabilities as compared to animals, it is important for their survival, because they cannot run away from trouble. It is found by careful observations of the behaviour of different plants that some plants do respond to the presence of the atmospheric electric field while other plants exposed to the same environment are indifferent to the atmospheric electric field. The plants growing in the Biosphere II were shielded by the metal structure of the Biosphere II. Because these plants which do make use of the atmospheric electric field are also to be found in the Biosphere II and must be deprived of this natural atmospheric electric field and in consequence of some of their natural nutrients. I have experimental evidence that at least some plants do respond to the atmospheric electric field. This effect is the most likely cause of the oxygen depletion and of the carbon dioxide accumulation in Biosphere II. Under the micro gravity encountered in space habitats the restoration of electric fields is even more important for plant growth than it is on the Earth.  相似文献   

10.
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.  相似文献   

11.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

12.
For extended duration missions in space the supply of basic life-supporting ingredients represents a formidable logistics problem. Storage volume and launch weight of water, oxygen and food in a conventional non-regenerable life support system are directly proportional to the crew size and the length of the mission. In view of spacecraft payload limitations this will require that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. This will be practical only if advanced life support systems can be developed in which metabolic waste products are regenerated and food is produced.

Biological Life Support Systems (BLSS) satisfy the space station environmental control functions and close the food cycle. A Biological Life Support System has to be a balanced ecological system, biotechnical in nature and consisting of some combination of human beings, animals, plants and microorganisms integrated with mechanical and physico-chemical hardware.

Numerous scientific space experiments have been delineated in recent years, the results of which are applicable to the support of BLSS concepts. Furthermore ecological life support systems have become subject to intensified studies and experiments both in the U.S. and the U.S.S.R. The Japanese have also conducted detailed preliminary studies.

Dornier System has in recent years undertaken an effort to define requirements and concepts and to analyse the feasibility of BLSS for space applications. Analyses of the BLSS energy-mass relation have been performed, and the possibilities to influence it to achieve advantages for the BLSS (compared with physico-chemical systems) have been determined. The major problem areas which need immediate attention have been defined, and a programme for the development of BLSS has been proposed.  相似文献   


13.
Mass balances for a biological life support system simulation model.   总被引:1,自引:0,他引:1  
Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here we develop the biochemical stoichiometry for 1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; 2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and 3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source. The large-scale dynamics of a materially-closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multi-food systems and more complex biochemical dynamics while maintaining whole-system closure as a focus.  相似文献   

14.
Our experiments examined enhancing tolerance of the photosynthesizing component to possible deviations in thermal or illumination conditions inside a bioregenerative life support system (BLSS). In the event of one parameter getting beyond its optimum, the values of other parameters may ensure minimal damage to the plant component during the period of environmental stress. With wheat plants (one of key elements of the plant component) as an example the work considers whether it is possible to enhance thermal tolerance by varying light intensity. Increase of air temperature to 35 degrees C or 45 degrees C with light intensity of 60 W/m2 PAR has been shown to substantially inhibit the photosynthesis processes; at 150 W/m2 PAR photosynthesis decreases from 50% to 100%, respectively; when light intensity is increased to 240 W/m2 PAR photosynthesis increased more than 70% at 35 degrees C and decreased at 45 degrees C by only 20%. Thus, light intensity can be increased to avoid or decrease the inhibiting effect of high temperatures. On the other hand, tolerance of wheat plants to prolonged absence of light can be substantially enhanced by decreasing during this period air temperature to temperatures close to 0 degrees C.  相似文献   

15.
The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.  相似文献   

16.
A number of space-based experiments have been conducted to assess the impact of microgravity on plant growth and development. In general, these experiments did not identify any profound impact of microgravity on plant growth and development, though investigations to study seed development have indicated difficulty in plants completing their reproductive cycle. However, it was not clear whether the lack of seed production was due to gravity effects or some other environmental condition prevailing in the unit used for conducting the experiment. The ASTROCULTURE (TM) flight unit contains a totally enclosed plant chamber in which all the critically important environmental conditions are controlled. Normal wheat (Triticum aestivum L.) growth and development in the ASTROCULTURE (TM) flight unit was observed during a ground experiment conducted prior to the space experiment. Subsequent to the ground experiment, the flight unit was transported to MIR by STS-89, as part of the U.S. Shuttle/MIR program, in an attempt to determine if super dwarf wheat plants that were germinated in microgravity would grow normally and produce seeds. The experiment was initiated on-orbit after the flight unit was transferred from the Space Shuttle to MIR. The ASTROCULTURE (TM) flight unit performed nominally for the first 24 hours after the flight unit was activated, and then the unit stopped functioning abruptly. Since it was not possible to return the unit to nominal operation it was decided to terminate the experiment. On return of the flight unit, it was confirmed that the control computer of the ASTROCULTURE (TM) flight unit sustained a radiation hit that affected the control software embedded in the computer. This experience points out that at high orbital inclinations, such as that of MIR and that projected for the International Space Station, the danger of encountering harmful radiation effects are likely unless the electronic components of the flight hardware are resistant to such impacts.  相似文献   

17.
The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.  相似文献   

18.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

19.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   

20.
The following hierarchical levels can be recognised in plant systems: cells, organs, organisms and gamodemes (interbreeding members of a community). Each level in this ‘living hierarchy’ is both defined and supported by a similar set of sub-systems. Within this framework of plant organization, two complementary questions are relevant for interpreting plant-oriented space experiments: 1) What role, if any, does gravity play in enabling the development of each organizational level? and 2) Does abnormal development in an altered gravity environment indicate sub-system inefficiency? Although a few representatives of the various organizational levels in plant systems have already been the subject of microgravity experiments in space laboratories—from cells in culture to gamodemes, the latter being found in some Closed Environment Life Support Systems—it would be of interest to investigate additional systems with respect to their response to microgravity. Recognition of the sub-systems at each level might be relevant not only for a more complete understanding of plant development but also for the successful cultivation and propagation of plants during long-term space flights and the establishment of plants in extra-terrestrial environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号