首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
对具有叶顶间隙的直叶栅和正、反弯三套涡轮叶栅进行了实验测量,研究在较大间隙(0.036)下,气流冲角和叶片弯曲对叶顶泄漏流动的影响。根据壁面流动的墨迹显示,应用拓扑学原理,分析了叶片表面和上、下端壁的拓扑结构,指出当气流冲角由0°增至20°时,与零冲角下的同类叶栅相比较,鞍点的位置均移向上游,分离区的范围在沿流向和垂直流向的方向上扩大,上、下通道涡分离线向叶展中部爬升。在冲角为零以及20°的情况下,叶片正弯均消除了上通道涡,这一方面减少了壁面流场中奇点和分离线的数量,较大地降低了上通道涡与泄漏涡的相互作用损失,另一方面强化了端壁横流对泄漏流动的封堵作用,有利于降低相对漏气量。  相似文献   

2.
大转角透平叶栅叶片反弯曲的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
同常规直叶栅相比 ,叶片反弯曲可改善端壁前缘区流动 ,降低前缘涡和通道涡强度 ,减小前缘涡损失及通道涡粘性耗散损失 ,整个叶栅的通流能力提高 3.2 % ,质量流量平均总损失降低19.1% ,同时 ,叶栅出口气流条件也得到改善。因此 ,对于大转角透平叶栅 ,在进行弯曲叶片的弯扭气动联合成型时 ,迫切需要研究和采用这种新的叶片叠积方式 ,以使二次流损失降低。  相似文献   

3.
叶栅二次流旋涡结构与损失分析   总被引:3,自引:2,他引:1  
采用三维粘性程序对某型动力涡轮的第一级进行了数值模拟, 模拟结果捕捉到了该涡轮级叶栅的内部流的流动细节, 展示了涡轮叶栅端壁和型面流动及叶栅通道内的三维流动结构.通过对叶栅中的二次流现象和流动损失机理的分析, 揭示了该涡轮级叶栅通道内二次流旋涡结构(马蹄涡、通道涡、壁角涡、尾迹涡、泄漏涡等)的演变过程, 以及旋涡结构对损失分布的影响.   相似文献   

4.
为了进一步揭示叶顶泄漏与压气机叶栅三维角区分离流动的相互作用机制,采用五孔气动探针测量了叶栅出口截面气动参数,并对机匣端壁静压进行了测量,详细分析了不同间隙尺寸及来流角度时压气机叶栅间隙流对角区三维分离流动的影响机理.研究结果表明,适当大小叶顶间隙引入的泄漏流阻止了端壁二次流动与叶片吸力面附面层之间的相互作用,移除了三维角区分离,改善了叶栅性能.随着叶顶间隙尺寸及叶栅内气流折转程度的增加,叶顶泄漏涡与上通道涡间的相互作用程度逐渐增强.  相似文献   

5.
高负荷叶片弯曲对壁面流动的影响   总被引:2,自引:0,他引:2  
测量了低展弦比高负荷涡轮直叶片和正、反弯叶片叶栅端壁和叶片表面静压及流道内损失沿流向的发展, 并对端壁和叶片吸力面上的流动进行了墨迹显示。实验结果表明:叶片正弯增大了叶栅进口段逆压梯度, 并在叶片吸力面前部形成反“C”型静压等值线, 加剧了叶片前缘的鞍点分离和吸力面分离线向叶栅中部的收敛。叶片反弯减小了叶栅进口段逆压梯度, 在吸力面进口形成垂直于端壁的静压等值线, 不仅削弱了鞍点分离, 而且造成吸力面上的自由涡层型分离, 避免了吸力面上、下分离线相交, 因此二次旋涡损失大为降低。   相似文献   

6.
叶片正弯曲对间隙流动损失的影响   总被引:2,自引:1,他引:1  
对具有2.3%相对顶部间隙的常规直叶栅和正弯叶栅的流道及间隙内的气动参数进行了详细测量,实验结果发现:顶部间隙的存在对叶栅的气动性能有较大影响,使叶栅上半翼展损失明显增高;叶片正弯曲减小了叶顶后部的横向压力梯度,削弱了泄漏流与端壁横流的相互作用,降低相对漏气量的同时也降低了叶栅的流动损失,明显改善了叶栅的出口流场。   相似文献   

7.
基于验证的数值模拟方法,针对带容腔结构的围带式静叶,研究了容腔泄漏流对其性能的影响以及容腔泄漏流与主流的相互干涉作用。在不同的来流附面层厚度下,探讨了叶栅二次流运动和角区分离发展情况,并通过总压损失系数和熵增系数对性能变化进行评判。结果表明:附面层厚度的增加使无容腔扩压叶栅总压损失系数和熵增损失系数增加。容腔泄漏流使叶片前缘出现容腔泄漏涡,并对通道涡的发展和集中脱落涡的大小产生影响;同时容腔泄漏流加强了叶栅通道内的三维流动效应,削弱了近端壁面流体的横向偏转;随着附面层增厚,带容腔的扩压叶栅的总压损失系数和熵增损失系数变化程度不明显。  相似文献   

8.
为探讨非轴对称端壁造型降低涡轮叶栅二次流损失的有效性,构建基于高压涡轮直列叶栅的非轴对称端壁气动优化设计方法,并用NUMECA/FineTurbo模块对优化后的结果和原涡轮叶栅分别进行流场计算。结果表明:非轴对称端壁造型使叶栅通道的总压损失系数面降低了2.84%;改变了通道内的叶片载荷分布,形成了叶型的载荷后置;改善了流场内的流动结构,使气流的流动变得更加通畅;延迟了通道涡的过早形成,减小了通道涡的强度和尺度。因此,非轴对称端壁造型可以有效地降低涡轮叶栅通道内的二次流损失。  相似文献   

9.
以某多级氦涡轮第一级为研究对象,借助数值模拟技术对低展弦比涡轮动静叶端壁通道涡迁移及干涉机制进行研究,并考察了叶片弯曲对涡轮气动性能的影响。结果表明:受下端壁道涡影响,导叶出口近叶根处气流过偏转,导致转子前缘近轮毂区正攻角变大;叶片根部负荷增加,致使马蹄涡压力面分支与吸力面分支交点前移;下端壁通道涡径向迁移至近叶顶区,其与叶尖泄漏涡相互影响致使叶顶区粘性损失显著增加。弯叶片对低展弦比大折转涡轮叶片的作用效果与传统涡轮具有明显差别:叶片正弯时叶顶载荷减小,导致叶顶间隙泄漏涡与通道涡强度及损失显著减小,涡轮性能得到改善;叶片反弯时叶顶载荷增加,致使叶尖泄漏损失增大,且强径向压力梯度作用下下端壁低能流体向叶顶汇聚,损失显著增加。  相似文献   

10.
为了进一步揭示吸力面叶尖小翼控制压气机叶栅间隙泄漏流动的作用机制,实验研究了三种不同宽度吸力面小翼在3%弦长间隙下对压气机叶栅气动性能的影响,并建立了带吸力面小翼的压气机叶栅旋涡结构模型。研究结果表明,吸力面小翼使得泄漏流在翼顶通道内发生掺混,延缓了泄漏涡的形成并降低了泄漏涡强度,三种宽度吸力面小翼分别使叶栅损失降低6.9%,7.7%和8.2%。吸力面小翼对叶栅损失值的降低量并不与其自身宽度增加量成线性关系。较大宽度的吸力面小翼会导致近端壁区气流欠偏转程度增加及泄漏流掺混损失等附加损失增大。  相似文献   

11.
具有叶顶间隙的涡轮正弯叶栅流场的拓扑与旋涡结构   总被引:2,自引:0,他引:2  
为进一步揭示在具有间隙的涡轮叶栅中叶片正弯降低泄漏损失的机理,采用微型束状与球头五孔测针详细测量了直叶栅和正弯叶栅间隙内和诸横截面流场听气动参数,并对壁面进行了墨迹显示。根据测量与显示结果,应用拓扑学原理分析了壁面与横截面流动的拓扑结构,推测出叶栅内流场的旋涡结构。分析结果表明,在直叶栅中存在着七条分离线与七大集中涡系,它们分别为上端壁叶顶进口吸力边与压力边马蹄涡,泄漏损失的机理,下端壁进口边马蹄  相似文献   

12.
具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测   总被引:1,自引:0,他引:1  
为了了解具有顶部间隙的涡轮转子叶栅流道内及间隙内的流动状况,采用五孔球头测针和五孔微型束状测针分别对叶栅流道和间隙进行了测量,同时对端壁及叶片壁面进行了流动显示,采用拓扑分析方法对显示结果进行了详细分析,探讨了间隙存在时叶栅各种旋涡的形成机理。测量及显示结果表明:由于顶部间隙的存在,在叶栅顶部形成如泄漏涡等复杂的涡系结构,这些涡系之间及它们与上通道涡之间发生强烈的相互作用,明显增大了叶栅的顶部损失;在叶栅尾缘附近存在着部分回流区域。  相似文献   

13.
对一压气机平面叶栅进行全三维数值模拟,分别对两种不同叶尖间隙情况下,移动端壁对叶栅性能及泄漏流流动结构的影响进行分析。详细对比了不同条件下,叶栅损失,泄漏涡传播轨迹及影响范围,泄漏流量等参数的变化,同时通过三维流线结构的对比,对泄漏流在间隙中的流动特点及其在通道中与主流的相互作用进行分析。结果表明:移动端壁加入使泄漏流量增加,泄漏涡传播轨迹向远离吸力面,靠近端壁的方向偏移,削弱通道流与泄漏流之间的剪切作用,改变通道中的各个二次流动结构所占比例。间隙较小时,移动端壁的影响主要集中在端壁附近,而间隙较大时,移动端壁能够抑制叶顶分离涡,从而影响整个间隙中泄漏流的速度分布,进一步削弱通道流与泄漏流动之间的剪切作用。   相似文献   

14.
带吸力面小翼的压气机叶栅变间隙特性实验   总被引:1,自引:0,他引:1  
为了进一步揭示吸力面小翼在不同叶尖间隙条件下的影响机理,开展了有/无吸力面小翼的压气机叶栅变间隙特性实验.结果表明:与无间隙叶栅相比,叶尖相对间隙为1%时引入的泄漏流可以有效抑制叶片吸力面/端壁角区三维分离的产生,叶栅总损失和气动堵塞程度最低,此时为研究的4种间隙工况中的最佳间隙工况.吸力面小翼在此间隙下降低了泄漏涡强度的同时使通道涡增强,叶片吸力面重新出现了三维分离流动,叶栅总损失和堵塞程度均有所增加.在叶尖相对间隙为2%和3%时,带吸力面小翼叶栅中叶尖分离涡增强,主导叶尖区流动的泄漏涡强度减弱,两种间隙下叶栅总损失系数分别降低了8.9%和12.5%,堵塞系数分别降低了6.9%和6.3%.在研究的3种非零间隙条件下吸力面小翼降低了叶栅气动损失对叶尖间隙变化的敏感性,减弱了叶尖泄漏涡造成的叶栅出口气流角的欠偏转/过偏转程度.   相似文献   

15.
扩压叶栅端壁区旋涡流动显示研究   总被引:6,自引:2,他引:4  
马宏伟  蒋浩康 《航空动力学报》1997,12(3):258-262,330
通过氢气泡流动显示,获取不同攻角、不同径向间隙下扩压叶栅端壁区内各种旋涡的发生、发展、涡-涡、涡-附面层干涉的流动图画。   相似文献   

16.
提出了一种控制扩压叶栅叶顶间隙流动的方法,通过对叶尖压力面小尺度的倒圆修型,改善了扩压叶栅叶顶间隙流动状况。通过数值模拟方法研究叶尖倒圆结构对扩压叶栅性能的影响及作用机理,并探究3种不同倒圆半径(约为3%、4%、6%的叶片最大厚度)叶尖倒圆结构的流动控制效果。结果表明:叶尖倒圆能够削弱叶尖分离涡,进而影响叶尖流场不同涡系之间的相互作用,使得叶顶间隙通道附近的总压损失减少;但是叶尖倒圆半径越大,泄漏流流量越大,会加剧泄漏流与主流的掺混,使总压损失增加。因此合适的叶尖倒圆半径能够使叶栅性能得到最大程度的改善。此外,在倒圆半径为3%叶片最大厚度时,叶栅在较大的攻角范围内均获得了良好的改善损失的效果。  相似文献   

17.
本文对一种大弯度可控扩散叶型叶栅槽道和栅后流场进行了测量 ,并对端壁和叶片表面进行了流动显示。通过研究 ,对叶栅槽道特别是端部气体流动 ,旋涡结构以及二次流影响有深入的了解。本文的工作对于改进压气机端部流动条件 ,发展第二代可控扩散叶型有重要的实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号