首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
One of the concerns for extended space flight outside the magnetosphere is exposure to galactic cosmic radiation. In the series of studies presented herein, the mutagenic effectiveness of high energy heavy ions is examined using human B-lymphoblastoid cells across an LET range from 32keV/micrometer to 190 keV/micrometer. Mutations were scored for an autosomal locus, thymidine kinase (tk), and for an X-linked locus, hypoxanthine phosphoribosyltransferase (hprt). For each of the radiations studied, the autosomal locus is more sensitive to mutation induction than is the X-linked locus. When mutational yields are expressed in terms of particle fluence, the two loci respond quite differently across the range of LET. The action cross section for mutation induction peaks at 61 keV/micrometer for the tk locus and then declines for particles of higher LET, including Fe ions. For the hprt locus, the action cross section for mutation is maximal at 95 keV/micrometer but is relatively constant across the range from 61 keV/micrometer to 190 keV/micrometer. The yields of hprt-deficient mutants obtained after HZE exposure to TK6 lymphoblasts may be compared directly with published data on the induction of hprt-deficient mutants in human neonatal fibroblasts exposed to similar ions. The action cross section for induction of hprt-deficient mutants by energetic Fe ions is more than 10-fold lower for lymphoblastoid cells than for fibroblasts.  相似文献   

2.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   

3.
We investigated the LET dependence of cell death, mutation induction and chromatin break induction in human embryo (HE) cells irradiated by accelerated carbon-ion beams. The results showed that cell death, mutation induction and induction of non-rejoining chromatin breaks detected by the premature chromosome condensation (PCC) technique had the same LET dependence. Carbon ions of 110 to 124keV/micrometer were the most effective at all endpoints. However, the number of initially induced chromatin breaks was independent of LET. About 10 to 15 chromatin breaks per Gy per cell were induced in the LET range of 22 to 230 keV/micrometer. The deletion pattern of exons in the HPRT locus, analyzed by the polymerase chain reaction (PCR), was LET-specific. Almost all of the mutants induced by 124 keV/micrometer beams showed deletion of the entire gene, while all mutants induced by 230keV/micrometer carbon-ion beams showed no deletion. These results suggest that the difference in the density distribution of carbon-ion track and secondary electron with various LET is responsible for the LET dependency of biological effects.  相似文献   

4.
It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing (Kelland et al., 1988; Radford, 1986). We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/micrometer and were even smaller than unity for the LET region greater than 300 keV/micrometer. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/micrometer, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main muse of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.  相似文献   

5.
G2-chromosome aberrations induced by high-LET radiations.   总被引:1,自引:0,他引:1  
We report measurement of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to gamma rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for gamma rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/micrometer silicon (2.7) or 80 keV/micrometer carbon (2.7) and then decreased with LET (1.5 at 440 keV/micrometer). RBE for chromatid-type break peaked at 55 keV/micrometer (2.4) then decreased rapidly with LET. The RBE of 440 keV/micrometer iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.  相似文献   

6.
To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.  相似文献   

7.
Low energy protons and other densely ionizing light ions are known to have RBE>1 for cellular end points relevant for stochastic and deterministic effects. The occurrence of a close relationship between them and induction of DNA dsb is still a matter of debate. We studied the production of DNA dsb in V79 cells irradiated with low energy protons having LET values ranging from 11 to 31 keV/micrometer, i.e. in the energy range characteristic of the Bragg peak, using the sedimentation technique. We found that the initial yield of dsb is quite insensitive to proton LET and not significantly higher than that observed with X-rays, in agreement with recent data on V79 cells irradiated with alpha particles of various LET up to 120 keV/micrometer. By contrast, RBE for cell inactivation and for mutation induction rises with the proton LET. In experiments aimed at evaluating the rejoining of dsb after proton irradiation we found that the amount of dsb left unrepaired after 120 min incubation is higher for protons than for sparsely ionizing radiation. These results indicate that dsb are not homogeneous with respect to repair and give support to the hypothesis that increasing LET leads to an increase in the complexity of DNA lesions with a consequent decrease in their repairability.  相似文献   

8.
Cyclotron-accelerated heavy ion beams provide a fine degree of control over the physical parameters of radiation. Cytogenetics affords a view into the irradiated cell at the resolution of chromosomes. Combined they form a powerful means to probe the mechanisms of RBE. Cytogenetic studies with high energy heavy ion beams reveal three LET-dependent trends for 1) level of initial damage, 2) distribution of damage among cells, and 3) lesion severity. The number of initial breaks per unit dose increases from a low-LET plateau to a peak at approximately 180 keV/micrometer and declines thereafter. Overdispersion of breaks is significant above approximately 100 keV/micrometer. Lesion severity, indicated by the level of chromosomal fragments that have not restituted even after long repair times, increases with LET. Similar studies with very low energy 238Pu alpha particles (120 keV/micrometer) reveal higher levels of initial breakage per unit dose, fewer residual fragments and a higher level of misrepair when compared to high energy heavy ions at the same LET. These observations would suggest that track structure is an important factor in genetic damage in addition to LET.  相似文献   

9.
Fundamental biological experiments with bacteria, yeast, and mammalian cells irradiated with ions heavier than helium indicate that maximal probability of single-hit inactivation does not occur when the ion has LET below about 100-200 keV/micrometer. Theoretical treatments of cell inactivation data and the radiation chemistry in particle tracks are consistent with this finding. If a "microlesion" is defined as a linear array, within a tissue, of cells inactivated with maximum probability, surrounded by non-lethally damaged cells, then, by this definition, there must be an LET below which "microlesion" damage cannot be expected. In a retrospective survey of experimental literature in which single-particle effects in tissues were sought, it was found that little or no evidence has been reported supporting single-particle effects in tissues when LET was below 200 keV/micrometer, while some experimenters who irradiated tissues with particles having LET greater than 200 keV/micrometer reported effects that could be attributed to single-particle tracks.  相似文献   

10.
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.  相似文献   

11.
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.  相似文献   

12.
Neoplasia in the rodent Harderian gland has been used to determine the carcinogenic potential of irradiation by HZE particles. Ions from protons to lanthanum at energies up to 670 MeV/a have been used to irradiate mice, and prevalence of Harderian gland tumors has been measured 16 months after irradiation. The RBE for tumor induction has been expressed as the RBEmax, which is the ratio of the initial slopes of the dose vs prevalence curve. The RBEmax has been found to be approximately 30 for ions with LET values in excess of 100 keV/micrometer. Analysis on the basis of fluence as a substitute for dose has shown that on a per particle basis all of the ions with LET values in excess of 100 keV/micrometer have equal effectiveness. An analysis of the probabilities of ion traversals of the nucleus has shown that for these high stopping powers that a single hit is effective in producing neoplastic transformation.  相似文献   

13.
Space radiations, especially heavy ions, constitute significant hazards to astronauts. These hazards will increase as space missions lengthen. Moreover, the dangers to astronauts will be enhanced by the persistence, or even the progression, of biological damage throughout their subsequent life spans. To assist in the assessment of risks to astronauts, we are investigating the long-term effects of heavy ions on specific animal tissues. In one study, the eyes of rabbits of various ages were exposed to a single dose of Bragg plateau 20Ne ions (LET infinity approximately equals 30 keV/micrometer). The development of cataracts has shown a pronounced age-related response during the first year after irradiation, and will be followed for two more years. In other studies, mice were exposed to single or fractionated doses of 12C ions (4-cm spread-out Bragg peak; dose-averaged LET infinity = 70-80 keV/micrometer) or 60Co gamma-photons (LET infinity = 0.3 keV/micrometer). Measurements of the frequency of posterior lens opacification have shown that the tissue sparing observed with dose fractionation of gamma-photons was absent when 12C-ion doses were fractionated. Development of posterior lens cataracts was also followed for long periods (up to 21 months) in mice exposed to single doses of Bragg plateau HZE particles (40Ar, 20Ne and 12C ions: LET infinity approximately equals 100, 30 and 10 keV/micrometer, respectively) or 225 kVp X-rays. Based on average cataract levels at the different observation times, the RBE's (RBE = relative biological effectiveness) for the ions were circa 5, 3 and 1-2, respectively, over the range of doses used (0.05-0.9 Gy). Investigations of cataractogenesis are useful for exploring the model of radiation damage proposed by Casarett and by Rubin and Casarett with a tissue not connected directly to the vasculature.  相似文献   

14.
For many years we have been interested in understanding the potential carcinogenic effects of cosmic rays. We have studied the oncogenic effects of cosmic rays with accelerator-produced heavy particle radiation and with a cultured mammalian cell system--C3H10T1/2 cells. Our quantitative data obtained with carbon, neon, silicon, and iron particles showed that RBE is both dose and LET dependent for neoplastic cell transformation. RBE is higher at lower dose, and RBE increases with LET up to about 200 keV/micrometer. In nonproliferation confluent cells, heavy-ion induced transformation damage may not be repairable, although a dose modifying factor of about 1.7 was observed for X-ray radiation. Our recent studies with super-heavy high-energy particles, e.g., 960 MeV/U U235 ions (LET = 1900 keV/micrometer), indicate that these ions with a high inactivation cross-section can cause neoplastic cell transformation. The induction of cell transformation by radiation can be modified with various chemicals. We have found that the presence of DMSO (either during or many days after irradiation) decreased the transformation frequency significantly. It is, therefore, potentially possible to reduce the oncogenic effect of cosmic rays in space through some chemical protection.  相似文献   

15.
While Q is specified as a function of linear energy transfer (LET) in practice the Q for neutrons has been selected by a judgment decision based on the relative biological effectiveness (RBE) to induce stochastic effects. There are no RBE values for tumor induction by heavy ions or protons in humans. Thus, selection of Q values has been based either on LET (or lineal energy) or RBEs from animal experiments. Estimates of Q for heavy ions in low earth orbit (LEO) range from about 5 to 14. The average Q value of all radiation in LEO has been estimated to be about 1.3. There is a lack of experimental data for RBEs for heavy ions but RBE increases as a function of LET. In the case of the Harderian gland the RBE reaches a maximum of 25-30 between about 100-200 keV/micrometer but does not appear to decrease at higher LETs. The International Commission of Radiological Protection have proposed the use of radiation weighting factors in lieu of quality factors. The weighting factors will range from 1 to 20.  相似文献   

16.
Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/micrometer. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.  相似文献   

17.
We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.  相似文献   

18.
Lenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/micrometer to 953 keV/micrometer and fluences from 1.31 10(3)/mm2 to 4.99 x 10(7)/mm2. 60Co gamma-rays were used as the reference radiation. The doses ranged from 10 to 40 cGy. The lenses were assessed 64 weeks post irradiation in order to observe the late effects of LET and dose on the target cell population of the lens epithelium. Our study shows that growth dependent pathological changes occur at the cellular level as a function of dose and LET. The shapes of the RBE-LET and RBE-dose curves are consistent with previous work on eye and other biological systems done in both our laboratory and others. The RBEmax's were estimated, for the most radiation cataract related cytological changes, MN frequency and MR disorganization, by calculating the ratio of the initial slopes of dose effect curve for various heavy ions to that of 60Co gamma-ray. For each ion studied, the RBEmax derived from micronucleus (MN) frequency is similar to that derived from meridional row (MR) disorganization, suggesting that heavy ions are equally efficient at producing each type of damage. Furthermore, on a per particle basis (particle/cell nucleus), both MN frequency and MR disorganization are LET dependent indicating that these classic precataractogenic indicators are multi-gene effects. Poisson probability analysis of the particle number traversing cell nuclei (average area = 24 micrometers2) suggested that single nuclear traversals determine these changes. By virtue of their precataractogenic nature the data on these endpoints intimate that radiation cataract may also be the consequence of single hits. In any case, these observations are consistent with the current theory of the mechanism of radiation cataractogenesis, which proposes that genomic damage to the epithelial cells surviving the exposure is responsible for opacification.  相似文献   

19.
Biochemical mechanisms and clusters of damage for high-LET radiation.   总被引:4,自引:0,他引:4  
Using mechanisms of indirect and direct radiation, a generalized theory has been developed to account for strand break yields by high-LET particles. The major assumptions of this theory are: (i) damage at deoxyribose sites results primarily in strand break formation and (2) damage to bases leads to a variety of base alterations. Results of the present theory compare well with cellular data without enzymatic repair. As an extension of this theory, we show that damage clusters are formed near each double strand break for high-LET radiation only. For 10 MeV/n (LET = 450 keV/micrometer) neon ions, the results show that on average there are approximately 3 additional breaks and approximately 3 damaged bases formed near each double strand break. For 100 MeV/n helium ions (LET = 3 keV/micrometer), less than 1% of the strand breaks have additional damage within 10 base pairs.  相似文献   

20.
Using spores of two Bacillus subtilis strains differing in repair capacity, we have studied repair and mutation induction in the spores after irradiation with very heavy ions up to uranium with specific particle energies up to 18.6 MeV/u. The results indicate that repair and mutation induction after heavy ion irradiation are closely related to each other and that both phenomena strongly depend on the atomic number and specific energy of the ions. The effects are discussed in comparison with results obtained after X-irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号