首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Histological preparations of brains from rabbits and mice exposed to different doses of various HZE particles or to low-LET photons have been subjected to preliminary quantitation of radiation-induced morphometric changes. Computer assisted measurements of several brain structures and cell types have been made using the KONTRON Automated Interactive Measurement System (IBAS, Carl Zeiss, Inc., Thornwood, N.Y. 10594 U.S.A.). New Zealand white rabbits irradiated at approximately 6 weeks of age were euthanatized 6.5-25 months after exposure to 60Co gamma photons (LET infinity = approximately 0.3 keV/micrometer, 20Ne particles (LET infinity = 35 +/- 3 keV/micrometer), or 40Ar particles (LET infinity = 90 +/- 5 keV/micrometer). Measurements of stained sections of the olfactory bulbs of those animals indicate that the mean size (volume) of olfactory glomeruli is reduced in a dose-dependent (and perhaps an LET-dependent) manner as soon as 6.5 months after irradiation. Differences between mean volumes of additional structures have been noted when histological preparations of control mouse brains were compared with irradiated specimens. Quantitation of intermediate and late changes in nervous (and other) tissues exposed to low- and high-LET radiations will improve our ability to predict late effects in tissues of astronauts and others exposed to the radiation hazards of the space environment.  相似文献   

2.
Optic tissues in groups of New Zealand white rabbits were irradiated locally at different stages throughout the median life span of the species with a single dose (9 Gy) of 425 MeV/amu Ne ions (LET infinity approximately 30 keV/micrometer) and then inspected routinely for the progression of radiation cataracts. The level of early cataracts was found to be highest in the youngest group of animals irradiated (8 weeks old), but both the onset of late cataracts and loss of vision occurred earlier when animals were irradiated during the second half of the median life span. This age response can have serious implications in terms of space radiation hazards to man. Rhesus monkeys that had been subjected to whole-body skin irradiation (2.8 and 5.6 Gy) by 32 MeV protons (range in tissue approximately 1 cm) some twenty years previously were analysed for radiation damage by the propagation of skin fibroblasts in primary cultures. Such propagation from skin biopsies in MEM-alpha medium (serial cultivation) or in supplemented Ham's F-10 medium (cultivation without dilution) revealed late damage in the stem (precursor) cells of the skins of the animals. The proton fluxes employed in this experiment are representative of those occurring in major solar flares.  相似文献   

3.
As an approach to determining the relative biological effectiveness (RBE) of each of five different heavy ions for the mammalian brain, histological preparations of brains from mice exposed to various HZE particles at different doses and primary LETinfinity values were examined by means of semi-automated image analysis for volume changes in specific regions of the olfactory bulb. The mice were irradiated at 100 days of age and euthanatized about 500 days (16 months) later. Exposures were: 60Co gamma photons (LETinfinity = 1-2 keV/micrometer), 4He (LETinfinity = 6 keV/micrometer), 12C (LETinfinity = 80 keV/micrometer), 20Ne (LETinfinity = 150 keV/micrometer), 56Fe (LETinfinity = 180 keV/micrometer), and 40Ar (LETinfinity = 650 keV/micrometer). Animals receiving particle radiation were exposed in an extended Bragg peak region except for iron where the plateau region was used. The zones measured in the olfactory bulb were 1) the external plexiform layer (zone) and 2) an internal region consisting of the granule cells, internal plexiform layer, and layer of mitral cells. These studies indicated that volume changes did indeed occur, not only in absolute terms but also when expressed as the ratio of the structures to each other and to the bulb as a whole. Although this study is exploratory in character, the data obtained may nevertheless contribute to a determination of risk factors due to late effects from HZE articles.  相似文献   

4.
Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.  相似文献   

5.
The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification.  相似文献   

6.
Theories of cellular radiation sensitivity that preclude a significant role for cellular repair processes in the final biological expression of cellular damage induced by ionizing radiation are unsound. Experiments are discussed here in which the cell-cycle dependency of the repair deficiency of the S/S variant, of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, 20Ne, 28Si, 40Ar, 56Fe and 93Nb. Evidence from those studies, which will be described in detail elsewhere, provide support for the notion that as the linear energy transfer (LET infinity) of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until effectively it is eliminated around 500 keV/micrometer. In the region of the latter LET infinity value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism (repair) does not influence cell survival. The expression of this phenomenon among different cell types and tissues will depend upon the actual repair systems involved and other considerations.  相似文献   

7.
Skin biopsies were taken from the central regions of the ears of New Zealand white rabbits following localized exposure of one ear of each rabbit to 530 MeV/amu Ar or 365 MeV/amu Ne ions. The unirradiated ears served as controls. Biopsies were taken also from the chests and inner thighs of rhesus monkeys after whole-body exposure to 32 MeV protons and from unirradiated control animals. The linear energy transfers (LET infinity's) for the radiations were 90 +/- 5, 35 +/- 3, and approximately 1.2 keV/micrometer, respectively. In the rabbit studies, explants were removed with a 2 mm diameter dermal punch at post-irradiation times up to five years after exposure. Similar volumes of monkey tissue were taken from skin samples excised surgically 16-18 years following proton irradiation. Fibroblast cultures were initiated from the explants and were propagated in vitro until terminal senescence (cessation of cell division) occurred. Cultures from irradiated tissue exhibited decreases in doubling potential that were dependent on radiation dose and LET infinity and seemed to reflect damage to stem cell populations. The implications of these results for astronauts exposed to heavy ions and/or protons in space include possible manifestations of residual effects in the skin many years after exposure (e.g. unsatisfactory responses to trauma or surgery).  相似文献   

8.
One of the concerns for extended space flight outside the magnetosphere is exposure to galactic cosmic radiation. In the series of studies presented herein, the mutagenic effectiveness of high energy heavy ions is examined using human B-lymphoblastoid cells across an LET range from 32keV/micrometer to 190 keV/micrometer. Mutations were scored for an autosomal locus, thymidine kinase (tk), and for an X-linked locus, hypoxanthine phosphoribosyltransferase (hprt). For each of the radiations studied, the autosomal locus is more sensitive to mutation induction than is the X-linked locus. When mutational yields are expressed in terms of particle fluence, the two loci respond quite differently across the range of LET. The action cross section for mutation induction peaks at 61 keV/micrometer for the tk locus and then declines for particles of higher LET, including Fe ions. For the hprt locus, the action cross section for mutation is maximal at 95 keV/micrometer but is relatively constant across the range from 61 keV/micrometer to 190 keV/micrometer. The yields of hprt-deficient mutants obtained after HZE exposure to TK6 lymphoblasts may be compared directly with published data on the induction of hprt-deficient mutants in human neonatal fibroblasts exposed to similar ions. The action cross section for induction of hprt-deficient mutants by energetic Fe ions is more than 10-fold lower for lymphoblastoid cells than for fibroblasts.  相似文献   

9.
G2-chromosome aberrations induced by high-LET radiations.   总被引:1,自引:0,他引:1  
We report measurement of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to gamma rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for gamma rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/micrometer silicon (2.7) or 80 keV/micrometer carbon (2.7) and then decreased with LET (1.5 at 440 keV/micrometer). RBE for chromatid-type break peaked at 55 keV/micrometer (2.4) then decreased rapidly with LET. The RBE of 440 keV/micrometer iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.  相似文献   

10.
Cyclotron-accelerated heavy ion beams provide a fine degree of control over the physical parameters of radiation. Cytogenetics affords a view into the irradiated cell at the resolution of chromosomes. Combined they form a powerful means to probe the mechanisms of RBE. Cytogenetic studies with high energy heavy ion beams reveal three LET-dependent trends for 1) level of initial damage, 2) distribution of damage among cells, and 3) lesion severity. The number of initial breaks per unit dose increases from a low-LET plateau to a peak at approximately 180 keV/micrometer and declines thereafter. Overdispersion of breaks is significant above approximately 100 keV/micrometer. Lesion severity, indicated by the level of chromosomal fragments that have not restituted even after long repair times, increases with LET. Similar studies with very low energy 238Pu alpha particles (120 keV/micrometer) reveal higher levels of initial breakage per unit dose, fewer residual fragments and a higher level of misrepair when compared to high energy heavy ions at the same LET. These observations would suggest that track structure is an important factor in genetic damage in addition to LET.  相似文献   

11.
Lenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/micrometer to 953 keV/micrometer and fluences from 1.31 10(3)/mm2 to 4.99 x 10(7)/mm2. 60Co gamma-rays were used as the reference radiation. The doses ranged from 10 to 40 cGy. The lenses were assessed 64 weeks post irradiation in order to observe the late effects of LET and dose on the target cell population of the lens epithelium. Our study shows that growth dependent pathological changes occur at the cellular level as a function of dose and LET. The shapes of the RBE-LET and RBE-dose curves are consistent with previous work on eye and other biological systems done in both our laboratory and others. The RBEmax's were estimated, for the most radiation cataract related cytological changes, MN frequency and MR disorganization, by calculating the ratio of the initial slopes of dose effect curve for various heavy ions to that of 60Co gamma-ray. For each ion studied, the RBEmax derived from micronucleus (MN) frequency is similar to that derived from meridional row (MR) disorganization, suggesting that heavy ions are equally efficient at producing each type of damage. Furthermore, on a per particle basis (particle/cell nucleus), both MN frequency and MR disorganization are LET dependent indicating that these classic precataractogenic indicators are multi-gene effects. Poisson probability analysis of the particle number traversing cell nuclei (average area = 24 micrometers2) suggested that single nuclear traversals determine these changes. By virtue of their precataractogenic nature the data on these endpoints intimate that radiation cataract may also be the consequence of single hits. In any case, these observations are consistent with the current theory of the mechanism of radiation cataractogenesis, which proposes that genomic damage to the epithelial cells surviving the exposure is responsible for opacification.  相似文献   

12.
We investigated the LET dependence of cell death, mutation induction and chromatin break induction in human embryo (HE) cells irradiated by accelerated carbon-ion beams. The results showed that cell death, mutation induction and induction of non-rejoining chromatin breaks detected by the premature chromosome condensation (PCC) technique had the same LET dependence. Carbon ions of 110 to 124keV/micrometer were the most effective at all endpoints. However, the number of initially induced chromatin breaks was independent of LET. About 10 to 15 chromatin breaks per Gy per cell were induced in the LET range of 22 to 230 keV/micrometer. The deletion pattern of exons in the HPRT locus, analyzed by the polymerase chain reaction (PCR), was LET-specific. Almost all of the mutants induced by 124 keV/micrometer beams showed deletion of the entire gene, while all mutants induced by 230keV/micrometer carbon-ion beams showed no deletion. These results suggest that the difference in the density distribution of carbon-ion track and secondary electron with various LET is responsible for the LET dependency of biological effects.  相似文献   

13.
The peculiarities and mechanisms of the mutagenic action of gamma-rays and heavy ions on bacterial cells have been investigated. Direct mutations in the lac-operon of E. coli in wild type cells and repair deficient strains have been detected. Furthermore, the induction of revertants in Salmonella tester strains was measured. It was found that the mutation rate was a linear-quadratic function of dose in the case of both gamma-rays and heavy ions with LET up to 200 keV/micrometer. The relative biological effectiveness (RBE) increased with LET up to 20 keV/micrometer. Low mutation rates were observed in repair deficient mutants with a block of SOS-induction. The induction of SOS-repair by ionizing radiation has been investigated by means of the "SOS-chromotest" and lambda-prophage induction. It was shown that the intensity of the SOS-induction in E. coli increased with increasing LET up to 40-60 keV/micrometer.  相似文献   

14.
Low energy protons and other densely ionizing light ions are known to have RBE>1 for cellular end points relevant for stochastic and deterministic effects. The occurrence of a close relationship between them and induction of DNA dsb is still a matter of debate. We studied the production of DNA dsb in V79 cells irradiated with low energy protons having LET values ranging from 11 to 31 keV/micrometer, i.e. in the energy range characteristic of the Bragg peak, using the sedimentation technique. We found that the initial yield of dsb is quite insensitive to proton LET and not significantly higher than that observed with X-rays, in agreement with recent data on V79 cells irradiated with alpha particles of various LET up to 120 keV/micrometer. By contrast, RBE for cell inactivation and for mutation induction rises with the proton LET. In experiments aimed at evaluating the rejoining of dsb after proton irradiation we found that the amount of dsb left unrepaired after 120 min incubation is higher for protons than for sparsely ionizing radiation. These results indicate that dsb are not homogeneous with respect to repair and give support to the hypothesis that increasing LET leads to an increase in the complexity of DNA lesions with a consequent decrease in their repairability.  相似文献   

15.
Fundamental biological experiments with bacteria, yeast, and mammalian cells irradiated with ions heavier than helium indicate that maximal probability of single-hit inactivation does not occur when the ion has LET below about 100-200 keV/micrometer. Theoretical treatments of cell inactivation data and the radiation chemistry in particle tracks are consistent with this finding. If a "microlesion" is defined as a linear array, within a tissue, of cells inactivated with maximum probability, surrounded by non-lethally damaged cells, then, by this definition, there must be an LET below which "microlesion" damage cannot be expected. In a retrospective survey of experimental literature in which single-particle effects in tissues were sought, it was found that little or no evidence has been reported supporting single-particle effects in tissues when LET was below 200 keV/micrometer, while some experimenters who irradiated tissues with particles having LET greater than 200 keV/micrometer reported effects that could be attributed to single-particle tracks.  相似文献   

16.
V79 Chinese hamster cells were exposed to heavy ions (O to U) and assayed for mutants at the HGPRT-locus by incubation in selective medium containing 6-thioguanine. The LET ranged from 300 to 18000 keV/micrometer. Mutants could be recovered from all particle radiation but the effectivity per deposited energy decreased with atomic numbers greater than 8. The results are discussed with regard to fundamental processes of cell reactions to very heavy ions and with respect to possible implications for hazard estimations.  相似文献   

17.
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.  相似文献   

18.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   

19.
The cytogenetic effects of X-rays and Au ions were investigated in repair-proficient CHO-K1 cells and their radiosensitive mutant strain xrs5, which shows a defect in the rejoining of DNA double-strand breaks. Both cell lines were synchronized by mitotic shake off, irradiated in G1-phase with either 250 kV X-rays or 780 MeV/u Au ions (LET: 1150 keV/micrometer) and chromosome aberrations were analyzed in first post-irradiation metaphases. Isoeffective doses of X-rays for the induction of aberrant cells and aberrations per cell were about 14 times lower for xrs5 than for CHO-K1 cells. After high LET radiation the difference in the cytogenetic response of both cell lines was drastically diminished. Furthermore, the analysis of the aberration types induced by sparsely and densely ionizing radiation showed for both cell lines specific changes in the spectrum of aberration types as LET increases. The experimental results are discussed with respect to the different types of lesions induced by sparsely and densely ionizing radiation.  相似文献   

20.
Biochemical mechanisms and clusters of damage for high-LET radiation.   总被引:4,自引:0,他引:4  
Using mechanisms of indirect and direct radiation, a generalized theory has been developed to account for strand break yields by high-LET particles. The major assumptions of this theory are: (i) damage at deoxyribose sites results primarily in strand break formation and (2) damage to bases leads to a variety of base alterations. Results of the present theory compare well with cellular data without enzymatic repair. As an extension of this theory, we show that damage clusters are formed near each double strand break for high-LET radiation only. For 10 MeV/n (LET = 450 keV/micrometer) neon ions, the results show that on average there are approximately 3 additional breaks and approximately 3 damaged bases formed near each double strand break. For 100 MeV/n helium ions (LET = 3 keV/micrometer), less than 1% of the strand breaks have additional damage within 10 base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号