首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved. Larry E. Mosher passed away during the preparation of this paper.  相似文献   

2.
The radar payload on a space-based radar (SBR) satellite could require tens of kilowatts of power distributed to many small loads over a large area. This poses special problems for the power distribution and control system (PDCS). A study that examined the power requirements of an SBR spacecraft is reported. A baseline prime power system, generating about 30 kW, was derived. The proposed distribution network would transmit 240 V at 20 kHz. The voltage would be downconverted in one converter for about 100 transmit/receive modules. The design considerations are discussed, and the baseline PDCS is described  相似文献   

3.
4.
The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.  相似文献   

5.
多电发动机控制系统十分复杂,需要采用分布式控制。分布式结构易于从部件级到子系统级再到系统级进行试验,同时大多数试验可通过仿真程序同步进行。基于某型发动机技术平台的分布式控制系统总体方案,在保留原平台的控制功能和控制规律基本不变的情况下,按多电发动机控制要求,大量采用电介质替代燃油介质实现控制功能,并按分布式控制方式进行系统总体方案设计。重点验证了新增控制功能、新原理控制元件和控制方法以及分布式控制总体运行模式,使其能在现有发动机平台上进行多电发动机分布式控制关键技术验证。  相似文献   

6.
7.
《中国航空学报》2016,(3):596-607
To analyze the parachute dynamics and stability characteristics of precision airdrop system,the fluid–structure interaction(FSI) dynamics coupling with the flight trajectory of a parachute–payload system is comprehensively predicted by numerical methods.The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian–Euler(ALE) penalty coupling method.With the available aerodynamic data obtained from the FSI simulation,a nine-degree-of-freedom(9DOF) dynamic model of a parachute–payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system.Finally,a linear five-degree-of-freedom(5DOF) dynamic model is developed,the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data.The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.  相似文献   

8.
航天器有效载荷设备之间高速率数据信号通过LVDS电缆进行传输,LVDS(低压差分信号)电缆的EMC特性对系统产生直接影响。LVDS电缆采用Pro/e软件进行三维设计和建模,通过电缆三维模型嵌入EMC软件的接口研究,摸索一套模型导出、重建、剖分和创建等的行之有效地方法。接口研究开创了LVDS电缆三维模型与EMC 软件接口从无到有的先河,初步搭建了Pro/e三维设计软件与系统级电磁仿真软件的桥梁。通过对航天器LVDS电缆在整星上布局的优化和EMC特性的分析,有力保障了航天器载荷可传输优质的图像质量。  相似文献   

9.
IEEEl394是一种具有支持等时传输和异步传输的特点的高速串行数据总线,目前已在航天器载荷试验数据传输中得到良好应用,但在未来大型空间飞行器载荷试验信息传输的应用中仍存在重量功耗开销大、传输距离和速率有限等问题.光纤通道作为一种具有良好兼容性、可靠性高、低时延、传输距离远和传输速率高等优点的先进总线技术,可为上层协议提供通用的高速率数据传输通道.基于IEEEl394和光纤通道的基本特性,给出了一种适用于空间载荷试验信息系统的FC-1394桥接方案,并为基于IEEE1394和光纤通道协议映射的空间信息系统数据网络互连提供了一种解决方案.  相似文献   

10.
针对三轴稳定静止轨道气象卫星图像运动补偿技术,分析了轨道运动误差源对有效载荷成像仪成像光轴的影响.基于轨道确定数据,采用空间成像矢量修正方法,对轨道运动引起的光轴偏离进行补偿.根据高分辨率成像对光轴高指向精度的指标要求,研究了轨道确定误差和有效载荷伺服控制系统误差对图像配准精度的影响关系,并指出了进一步提高图像配准精度的措施.仿真结果表明了补偿方法的可行性.  相似文献   

11.
赖承祺  顾左  宋莹莹  王蒙  郭伟龙  吴辰宸 《推进技术》2019,40(10):2183-2189
为预估与提高航天器有效载荷能力,结合航天运输系统理论与离子推力器放电模型,对深空探测任务中以离子电推进系统为主要动力来源的航天器有效载荷能力进行了分析。通过理论推导,构建并揭示了有效载荷分数与深空探测任务参数和电推进系统性能参数的函数关系与潜在联系。结果表明:动力装置单位质量越小,航天器所能达到的最佳有效载荷分数越大;有效载荷分数的高低与离子引出份额、原初电子利用率参数的大小以及任务时间的长短呈正相关;当离子电推进系统可以达到更高的载荷比时,则需要更高的工质利用率作为支持。  相似文献   

12.
地球同步轨道卫星在每年春分、秋分前后25d左右一般会出现地敏探头太阳干扰,可以采用星上自主方式进行地敏干扰保护,以防御此种干扰的影响。星上自主干扰保护失效时,需要通过地面发送卫星遥控指令处置。由于当前GEO(Geostationary Earth Orbit,地球同步轨道)卫星地球敏感器自主干扰保护失效的实时处置占用遥控平台时间过长,会严重影响卫星有效载荷应用。所以,针对此问题,在地敏确定卫星姿态原理的基础上,分析了地敏自主干扰保护失效的机理,提出了基于软件进程的地敏太阳干扰保护流程和操作计划,设计了基于遥控指令序列的卫星实时判断脚本。经验证,此方法可将遥控平台占用时间从4h缩短至30min以内,为卫星有效载荷应用留出了时间窗口。  相似文献   

13.
A high-precision attitude determination and control of the forthcoming European Gaia satellite is an essential task for the success of the whole mission. The requirements for the spacecraft’s attitude require exceptional efforts in the simulation of the rotations of the satellite under the influence of continuous and randomly arising effects. This paper describes the structure of a physically-motivated noise model for simulating the attitude in a closed loop configuration. It deals with the analysis of the most important disturbing forces and torques acting on the Gaia spacecraft.  相似文献   

14.
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification (RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point (i.e., a certain manipulator configuration). The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.  相似文献   

15.
A novel method is introduced for autonomous attitude estimation of a mini unmanned aerial vehicle (UAV) carrying an inertially stabilized payload. The method is based on utilizing the outputs of rate gyros normally used to inertially stabilize the payload, and other data that is normally available from conventional aircraft-mounted sensors. A decentralized estimation algorithm is developed, which uses the aircraft/payload mathematical models to bound the estimation errors. Exploiting modern multiprocessor computer technology, the new estimation algorithm comprises two parallel extended Kalman filters (EKFs) and a data fusion algorithm. Real-time experimental tests, incorporating a payload model with real rate gyros mounted on a three-axis flight table, have validated the feasibility of the concept. The theoretical and experimental investigation demonstrates that the estimation algorithm is capable of estimating the attitude angles with an estimation error not exceeding 1 deg, at output rates of 13 Hz, thus constituting a viable substitute for the conventional vertical gyroscope  相似文献   

16.
张尧  徐世杰 《航空学报》2012,33(9):1643-1654
为实现星上光学有效载荷的高成像性能,对星上光学有效载荷的两级隔振进行了研究。所谓两级隔振,即除了对控制力矩陀螺群(CMGs)等执行机构振动源进行隔振外,还在光学有效载荷和星体之间加入隔振装置。首先建立了含有两级隔振系统以及CMGs和太阳帆板的整星动力学模型,并采用ADAMS工程软件验证了所推导模型的正确性;其次,在合理假设的基础上简化模型,分别求得由扰动源到星体和有效载荷的传递函数矩阵,分析CMGs隔振平台参数变化对姿态控制系统的影响,选择合理参数分析两级隔振系统的频域特性;最后通过数值仿真分析了两级隔振系统在星上应用的可行性,并通过频谱对比分析两级隔振系统对光学有效载荷姿态稳定度的改善程度。  相似文献   

17.
A white light coronagraph was launched into orbit aboard the space shuttle OV 103 (Discovery) on 7 April 1993. This device was one of two instruments included in the SPARTAN 201-1 payload, a completely autonomous sub-satellite deployed from the shuttle for a period of about 47 hours. The WLC system is an externally occulted coronagraph system which incorporates a rotating half-wave plate polarimeter, and the image data is used to infer the brightness, the polarized brightness and the degree of polarization of the white light emission from the solar corona. These data are in turn used to infer estimates of the K- and F-coronal brightnesses and density distributions. We shall present preliminary results of the electron density estimate in the coronal streamer and hole region and describe the methods employed.affiliated to USRA  相似文献   

18.
The Lockheed developmental remotely piloted vehicle (RPV) is a highly sophisticated miniature airplane which represents the current state of the art in RPVs. The avionics, which include flight controls, inertial attitude reference, recovery guidance, payload and data link, represent more than 80 percent of the cost of the vehicle. The key cost drivers are the payload and data link which must accommodate long stand-off range and rapid AV jinking for good survivability, day and night operation, high radio jamming conditions, and high-precision laser pointing accuracy. However, there are many RPV applications which are less demanding and can therefore take advantage of substantial cost reductions. Lockheed Research & Development Division is addressing this need by defining flexible, adaptive, avionics concepts which emphasize the nondevelopmental philosophy. One such system is the Lockheed Adaptive Modular Payload (LAMP). This system promotes use of a standard universal two-axis gimbal platform into which many different forms of imaging sensors can be installed. This concept is aimed at reconnaissance and surveillance. It is now being integrated into the future RPV programs at the Lockheed Austin Division.  相似文献   

19.
高毅  刘永强  赵小冬 《航空计算技术》2010,40(1):123-125,130
电路交换开关模块是新一代航空电子系统中实现数字信号并行处理的关键模块,为数字信号并行处理系统中的各个数据处理模块、信号处理模块提供高速数据传输与交换。从新一代航空电子系统并行处理的发展趋势及需求的角度出发,介绍了电路交换开关模块的设计和实现。电路交换开关模块采用M21131交叉开关构成交换结构,能够快速交换高速信号,支持重配置和重构,能够满足新一代航空电子系统中数字信号并行处理高速率、高可靠性和低延迟等需求。  相似文献   

20.
《中国航空学报》2016,(5):1273-1284
This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element models at each iteration step, which draws high demands in opti-mization methods. Considering the common characteristic for these two types of problems, which is that the design domain keeps the same no matter what the structure cases or payload cases are, both problems can be formulated into the unified expressions. A two-level multipoint approxima-tion (TMA) method is firstly improved with the use of analytical sensitivity analysis for structural mass, and then this improved method is utilized to tackle these two types of problems. Based on the commercial finite element software MSC.Patran/Nastran, an optimization system for multiple structure cases and multiple payload cases is developed. Numerical examples are conducted to ver-ify its feasibility and efficiency, and the necessity for the simultaneous optimizations of multiple structure cases and multiple payload cases are illustrated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号