首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented.  相似文献   

2.
Three french laboratories have participated in the Free Flyer Biostack experiment. Artemia cysts, tobacco seeds and rice caryopsis and embryos were used. Biological objects in monolayers were dead. In opposite, a large fraction of samples used in bulk survived. A stimulatory effect occurred in the first steps of development in Artemia cysts. In fact, the larval survival was unchanged or slightly reduced. In tobacco a drastic decrease in germination and survival rate was observed. Space flight did not induce genetic changes. In rice, results depend on the variety which was investigated; the growth rate stimulation in flight samples is discussed with respect to controls.  相似文献   

3.
将我国所产卤虫(Artemia salina)的卵,由1987年8月5日发射的返地卫星搭载,在空间飞行5天。于飞行完成后第8、21、24、34及66天,随机取卵进行人工孵化及发育观察。见到的主要现象有:(1)飞行卵的早期发育进程显著变慢;(2)随着回收后时间的延长,飞行卵的早期发育速度出现回升的趋势;(3)飞行卵早期发育中的冒出率和孵出率一般都比地面对照组的低,且随着回收后时间的延长,有继续下降的趋势;(4)飞行卵孵出的卤虫,自孵出第1天至接近全部自然死亡的23天内,存活率的下降情况与地面对照组的没有差异。本文提出一种空间飞行因素对卤虫卵损伤的“临界程度”的假设。实验还表明,我国所产的卤虫卵对空间飞行因素的作用是敏感的,是一种空间生物学研究的好材料。   相似文献   

4.
Artemia cysts, lettuce and tobacco seeds were flown aboard the Cosmos 1129 for 19 days. A correlative method was used in order to determine the passage of cosmic heavy ions (HZE particles) through the biological test objects. This space flight resulted in a decrease on hatchability, nucleic acid and protein synthesis in hydrated Artemia cysts. HZE particle effects on plant cellular chromosomes are confirmed. In tobacco seeds, a stimulating effect on germination rate and a higher frequency of abnormalities were observed. Dormant biological objects are a very suitable material to study cosmic ray effects: these objects can be arranged in monolayers and sandwiched between visual track detectors in order to determine the passage of the cosmic heavy ions (HZE particles). On the other hand this method allows us to study effects of microgravity and those of the protonic component of cosmic rays in the objects not hit by the HZE articles.  相似文献   

5.
To accommodate a spaceflight experiment with moss (SPM), experiment-unique equipment (EUE) was developed by engineers at Kennedy Space Center. The hardware allows sterile culture for an extended period of time in commercial petri dishes, lateral illumination of each culture with light of a specific wavelength (660 nm; other wavelengths are possible) and a range of intensities (0.05-5 micromoles photons m-2 s-1), incubation in complete darkness, and chemical fixation to terminate the experiment under conditions of microgravity. The use of a fixative required triple containment to protect the astronaut crew. An external panel on the experiment container allowed the timing of illumination and fixation to be controlled by the crew. Light quality is provided by light emitting diodes (LEDs) that are located in the lid of the outer container, the BRIC (Biological Research In Canisters)-LED. Each canister accommodates 6 Petri Dish Fixation Units (PDFUs), and each PDFU holds one 6 cm petri dish. All components are autoclavable. LED illumination is piped through a transparent glass rod. Each PDFU contains fixative in a reservoir that is released by the depression of an actuator. This hardware performed well during its first flight, the 16-day STS-87 mission in Nov./Dec., 1997 as part of the Collaborative USA and Ukrainian Experiment (CUE). It supported vigorous and sterile moss growth, cells were maintained in position and were well-fixed, and there was a vigorous and consistent response to light. Although here used for moss, in future flight experiments this unique new hardware can be used for many types of organisms normally grown in petri dishes, with or without a requirement for illumination.  相似文献   

6.
7.
Space flight experiments on Chinese silkworm (Bombyx mori L.) were conducted on board the Russian 10th Biosatellite for 12 days. The samples included silkworm eggs, larvae, cocoons, pupae and moths. The processes of spinning, cocooning, mating, oviposition, larval hatching, pupation and moth emergence all completed well in space. The following effects of space flight on silkworm development were observed: The times of hatching and oviposition in the flight group were 2 to 3 days earlier than in the control group; the hatching rate of diapause eggs during space flight seemed higher than that of the control group; the life span of 2 of the 7 varieties flown was shortened; genetical variations appeared in 3 varieties. The results showed that the embryonic stage was probably the period most sensitive to the space flight environment.  相似文献   

8.
Eggs of Carausius morosus were exposed to spaceflight conditions in two spaceflight missions, the German 7 day Spacelab Mission D1 and the Soviet 12.56 day Biosatellite Mission "COSMOS 1887". During spaceflight the eggs continued their development. Eggs of five different ages representing different sensitivity to radiation and different capacity to regeneration were used to investigate the influence of cosmic radiation and/or microgravity on insect development. Using the Biostack concept--eggs in monolayers sandwiched between nuclear track detectors--and the 1 g reference centrifuge of BIORACK in D1 we were able to separate effects of heavy ions of the cosmic radiation from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, embryonic and larval growth kinetics and anomaly frequencies were determined. Microgravity leads to a reduced hatching rate of eggs exposed in the early stages of development. Hatching was normal in eggs which were exposed on the 1 g reference centrifuge. Hits by heavy ions caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high frequency of anomalies. These results obtained from the Spacelab Mission D1, were confirmed in an experiment onboard of COSMOS 1887. In addition to the previous analysis, embryonic development before hatching was followed which showed no major difference between flight and the ground control specimens. Since a reconfirmation of reduced hatching rates was observed in COSMOS 1887, too, the above results suggest some microgravity induced functional impairment of the hatching activity, rather than blockage in embryonic development.  相似文献   

9.
From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.  相似文献   

10.
In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.  相似文献   

11.
A potato explant consisting of a leaf, its axillary bud, and a small segment of stem will develop a tuber in 10-14 days when grown on earth. The tubers develop from the axillary buds and accumulate starch derived from sugars produced through photosynthesis and/or mobilized from leaf tissue. Potato explants were harvested and maintained in the Astroculture (TM) unit, a plant growth chamber designed for spaceflight. The unit provides an environment with controlled temperature, humidity, CO2 level, light intensity, and a nutrient delivery system. The hardware was loaded onto the space shuttle Columbia 24 hours prior to the launch of the STS-73 mission. Explant leaf tissue appeared turgid and green for the first 11 days of flight, but then became chlorotic and eventually necrotic by the end of the mission. The same events occurred to ground control explants with approximately the same timing. At the end of the 16-day mission, tubers were present on each explant. The size and shape of the space-grown tubers were similar to the ground-control tubers. The arrangement of cells in the tuber interior and at the exterior in the periderm was similar in both environments. Starch and protein were present in the tubers grown in space and on the ground. The range in starch grain size was similar in tubers from both environments, but the distribution of grains into size classes differed somewhat, with the space-grown tubers having more small grains than the ground control tubers. Proteinaceous crystals were found in tubers formed in each condition.  相似文献   

12.
空间站与其它航天器相比,有很多优越性。文内详细地阐述了空间站的四大特征:①先入轨后上人,既提高了安全保障,又简化了研制过程;②具有自主补给消耗品、检修和更换设备的能力;③具有长期航天的素质;④具有可变更和可扩大其功能的性质。这些特征及其优越性,充分体现了空间站在未来载人航天活动中的地位和作用。  相似文献   

13.
Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish (Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.  相似文献   

14.
During the entire evolution of life on Earth, the development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hypergravity (centrifuge) or microgravity (spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on these questions, comprising gravistimulated effects on invertebrates and vertebrates (with the exception of mammals, since respective biomedically oriented reviews abound), focusing on developing fish as model systems, with special emphasis on the effect of altered gravity on the developing brain and vestibular system, comprising investigations on behaviour and plastic reactivities of the brain and inner ear. Clues and insights into the possible basic causes of space motion sickness-phenomena (SMS; a kinetosis) are provided as well as perspectives in regard to future work to be done including studies on the ISS concerning the analysis of gravistimulated effects on developmental issues (imprinting phase for graviperception?).  相似文献   

15.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules.  相似文献   

16.
在“神舟号”载人飞船工程实现了中国人往返于天地间的目的之后 ,中国应审慎地选择发展载人航天的目标。文章从中国社会对载人航天的需求出发 ,讨论了以开发利用空间微重力物质环境为目标的空间站和以发展天基航天为目标的天基航天站的外部工程系统的环境条件 ,认为中国在运载火箭、发射和回收场、测控站网方面已有较好基础 ,基本具备条件 ,运人运输器已有“神舟号”载人飞船 ,运物运输器的研制也不困难 ,但在为保障航天员在空间生活、工作的航天员系统方面和为实现载人航天工程功能和显现价值的有效载荷系统方面欠缺较多 ,需要一个研究、试验、培训和开发、演示的发展阶段  相似文献   

17.
The first microgravity protein crystal growth experiments were performed on Spacelab I by Littke and John. These experiments indicated that the space grown crystals, which were obtained using a liquid-liquid diffusion system, were larger than crystals obtained by the same experimental system on earth. Subsequent experiments were performed by other investigators on a series of space shuttle missions from 1985 through 1990. The results from two of these shuttle flights (STS-26 and STS-29) have been described previously. The results from these missions indicated that the microgravity grown crystals for a number of different proteins were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth. This paper presents the results obtained from shuttle flight STS-32 (flown in January, 1990) and preliminary results from the most recent shuttle flight, STS-31 (flown in April, 1990).  相似文献   

18.
中国航天医学进展   总被引:3,自引:0,他引:3  
航天医学是随着载人航天事业的发展而兴起的一门特种医学学科、随着人类对太空的不断探索,从学科创建至今的短短几十年时间取得了巨大的发展,我国的载人航天工程于20世纪90年代初启动,但航天医学发展的历史却可追溯到50年代末,特别是近10年来,我国载人航天工程的启动为航天医学的发展带来了重大机遇,目前,我国首次载人航天飞行已获圆满成功,首飞航天员也已安全、健康地重返地球,航天医学专家们与航天员一同经受住了首次载人航天飞行的考验、本文简要介绍了我国航天医学的基础研究和应用研究,以及取得的进展,并展望了今后将面临的挑战和机遇。  相似文献   

19.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles--mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus--are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.  相似文献   

20.
An extensive model analysis of plastic track detector measurements of high-LET particles on the Space Shuttle has been performed. Three shuttle flights: STS-51F (low-altitude, high-inclination), STS-51J (high-altitude, low-inclination), and STS-61C (low-altitude, low-inclination) are considered. The model includes contributions from trapped protons and galactic cosmic radiation, as well as target secondary particles. Target secondaries, expected to be of importance in thickly shielded space environments, are found to be a significant component of the measured LET (linear energy transfer) spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号