首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
王亚敏  乔栋  崔平远 《宇航学报》2012,33(12):1845-1851
从月球逃逸探测小行星的发射机会搜索因需考虑日、地、月引力的影响而使问题变得复杂。针对该多体系统的发射机会搜索问题,提出了一种分层渐近的搜索方法。该方法首先通过分析地月系质心与小行星的几何关系,搜索从地月系质心到小行星的发射机会,进而以地月运动为研究对象,推导出了从月球轨道切向逃逸机会的判别条件,并基于此判别条件及等高线图法对逃逸机会进行了搜索。同时,为提高所得发射机会在多体模型下的轨道修正收敛性,给出了基于月心逃逸轨道参数为终端约束的日-地与日-地-月动力学模型的轨道渐近修正方法。最后,以近地小行星(3908)Nyx和(190491)2000 FJ20为例,搜索其从月球逃逸的发射机会,仿真计算表明了该方法的有效性。  相似文献   

2.
Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun–Jupiter system and, in recent years, in the Sun–Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth–Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.  相似文献   

3.
地月L2点的拟周期轨道可以用于实现与月球背面的持续通信,具有重要的科学研究价值和广阔的应用前景。针对地月L2点探测器所处的弱稳定拟周期轨道,论证了基于日地月信息的自主导航方法的可行性,并进行了深入分析。首先,推导了会合坐标系下带有星历的精确导航动力学方程;其次,针对弱稳定轨道不同于近地强稳定轨道的特性,在基于日地月方位信息导航的基础上,提出了三种敏感器组合方案。使用迭代最小二乘方法给出导航仿真结果,并结合非线性可辨识性理论对这三种情况下历元状态的可辨识性及可辨识度进行分析。最后,仿真结果表明,使用日地月敏感器以及对地多普勒雷达可以满足历元状态的可辨识性、导航的收敛性以及系统经济性的要求。  相似文献   

4.
Based on the results of paper [1] by G.V. Mozhaev, joint perturbations produced by nonsphericity of the Earth and by attraction of the Moon and the Sun are investigated using the method of averaging. Arbitrary number of spherical harmonics was taken into account in the force function of the Earth’s gravitational filed, and only the principal term was retained in the perturbing function of the Sun. In the perturbing function of the Moon two parallactic terms were considered in addition to the dominant term. The flight altitude was chosen in such a way that perturbations produced by the Sun and Moon would have the second order of smallness relative to the polar oblateness of the Earth. As a result, the formulas for calculation of satellite coordinates are derived that give a high precision on long time intervals.  相似文献   

5.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

6.
祁瑞  徐世杰 《宇航学报》2013,34(8):1055-1062
借助有限时间Lyapunov指数(FTLE)定义了拉格朗日拟序结构(LCS),并将LCS作为不变流形的替代物。针对日-地-月双圆模型(BCM),利用LCS研究了限制性四体问题(R4BP)中的时间相关不变流形(TDIM)的性质。采用数值方法验证了TDIM是运动分界面和轨道不变集。继而,利用二分法对给定Poincare截面上的LCS进行了精确提取,通过一系列等能量面上的LCS描绘出TDIM在给定截面上的构形。最后,借助TDIM,初步研究了低能奔月轨道在非自治系统BCM中的直接构建。  相似文献   

7.
A method of constructing three-dimensional orbits with a necessary evolution in the system the Sun — (Earth + Moon) is described. The orbit (promising from the viewpoint of solving formulated research problems) of the Millimetron spacecraft is suggested. Feasibility of such an orbit is demonstrated, as well as a possibility to observe with its help the majority of objects on the celestial sphere and to transmit the data to the Earth.  相似文献   

8.
The problem of the optimal spacecraft’s insertion from the Earth into the high circular polar Moon Artificial Satellite’s orbit (MAS) with a radius of 4000–8000 km has been investigated. A comparison of single- and three-impulse insertion schemes has been performed. The analysis was made taking into account the disturbances from the lunar gravity field harmonics and the gravity fields of the Earth and the Sun, as well as the engine’s limited thrust. It has been shown that the three-impulse transfer from the initial selenocentric hyperbola of the approach into the considered final high MAS orbit is noticeably better with respect to the final mass than the ordinary single-impulse deceleration. The control parameters that implement this maneuver and provide nearly the same energy expenses as in the Keplerian case have been presented. It was found that, in contrast to the Keplerian case, in the considered case of the real gravity field, there is the optimal maximum distance of the maneuver. Recently, the Moon exploration problem became actual again.  相似文献   

9.
地-月系平动点及Halo轨道的应用研究   总被引:10,自引:5,他引:10  
徐明  徐世杰 《宇航学报》2006,27(4):695-699
地-月系统的平动点L1点及L2点的Halo轨道在探月工程中有重要的应用价值,可分别用于地月连续通信覆盖和月球背面的探测。由于在地-月系统中太阳的引力不可忽略,特别是在长时间作用以后,其动力学行为与摄动力较小的日-地系统有明显的不同。本文分析了如何利用太阳引力进入地-月系统的L1点及L2点的Halo轨道、以及由Halo轨道进入近月轨道的问题,两者综合起来构成了一条完整的地月低能转移轨道。研究结果对探月轨道设计有一定的参考价值。  相似文献   

10.
双三体系统不变流形拼接成的低成本探月轨道   总被引:3,自引:0,他引:3  
传统的探月轨道设计原理为二体模型框架下的Hohmann变轨理论,但1991年日本的Hiten探月器利用太阳的摄动,用比传统的方法更少的燃料完成了探月任务。利用三体问题非线性系统的不变流形设计了节省燃料的探月轨道。沿用JPL研究组的思路,将太阳-地球-月亮-航天器四体问题分解成太阳-地球-航天器和地球-月亮-航天器两个共面的圆形限制性三体问题,对Hiten类的探月轨道给出了更深刻的数学、力学解释;给出了流形的结构以及更合理的拼接方式;找到了发射位置、发射速度和拼接点;设计出了类似Hiten探月器的探月轨道,可比传统方法节省速度增量12%左右。结果证明了三体系统不变流形在登月轨道设计研究中的可行性和优越性。  相似文献   

11.
The practical tasks related to qualitative investigation of long-term evolution of high-apogee orbits of artificial Earth satellites (AES), for which the main perturbing factors are gravitational perturbations from the Moon and the Sun, are considered. Attention is given to the problem of the ballistic lifetime of similar orbits, and the issues associated with possibilities of the correction of orbits for ensuring the required duration of their ballistic lifetime are considered. The orbit of the SPECTR-R spacecraft launched in July of 2011 is considered as an example.  相似文献   

12.
The Moon landings of the Apollo programme irrevocably changed the way we see ourselves. Most significantly, this was the first time that humans had set foot on a celestial body other than Earth. The program has left a number of sites on the Moon as well as on Earth. While the management of the sites and artefacts on Earth is fairly straightforward as they are subject to national heritage legislation, it is not so simple with the sites and artefacts on the lunar surface. Moreover, the sites on the Moon differ in one unique aspect from all other heritage sites on Earth: the absence of a lunar atmosphere of any note means that all foot- and track prints of the astronauts are preserved providing a total record of the pioneering phases of human exploration of the Moon. The nascent developments of space tourism, including proposals for lunar heritage tourism, however, threaten the preservation of these traces on the Moon. This paper discusses the terrestrial and in particular the extraterrestrial heritage of the Apollo programme. Set out are the management ethics that need to apply on the lunar surface if this unique heritage is to have a future.  相似文献   

13.
A mathematical model of perturbed rotational motions of the deformable Earth, adequate to astrometric measurements of the International Earth Rotation Service (IERS), is constructed using methods of celestial mechanics. It is based on the gravitational tidal mechanism of the influence of the Sun and Moon. The authors have found fine resonant structure of interaction of long-period zonal tides (annual, semi-annual, monthly, and two-week) with diurnal and semidiurnal tides. This essential property is reliably confirmed by spectral analysis of the IERS data. In this paper, a numerical simulation of tidal irregularities of the Earth’s axial rotation is performed. The primary emphasis is placed on the analysis of variations of the duration of the day on short time intervals with periods of one year and less (intra-annual oscillations) and their forecast.  相似文献   

14.
Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge–Kutta–Fehlberg method. The results of numerical experiments are given for the Earth–Moon system parameters taking into account the perturbation of the Sun for different L-matrices.  相似文献   

15.
面向载人登月任务需要,针对星历模型下具备自由返回能力的地月转移轨道设计问题进行了研究。在三体模型下对地月三维自由返回轨道进行了求解,得到了地月空间内的自由返回轨道分布情况。在二体模型假设下对近月段的三脉冲变轨进行了求解,给出了变平面机动的计算方法。进一步提出了两轮逐次优化修正策略,分别以高度和再入走廊为主要约束,采用内点法和SQP算法在高精度星历模型下对自由返回轨道初值进行逐次优化修正。之后,采用SQP算法在星历模型下对近月三脉冲变轨进行优化修正,得到了星历模型下的自由返回+近月三脉冲变轨地月转移策略。仿真校验结果表明本文提出的方法能够在给定约束下有效求解星历模型下具备自由返回能力的地月转移轨道,为载人登月任务的转移轨道设计提供参考。  相似文献   

16.
The problem of planar oscillations of a pendulum with variable length suspended on the Moon’s surface is considered. It is assumed that the Earth and Moon (or, in the general case, a planet and its satellite, or an asteroid and a spacecraft) revolve around the common center of mass in unperturbed elliptical Keplerian orbits. We discuss how the change in length of a pendulum can be used to compensate its oscillations. We wrote equations of motion, indicated a rule for the change in length of a pendulum, at which it has equilibrium positions relative to the coordinate system rotating together with the Moon and Earth. We study the necessary conditions for the stability of these motions. Chaotic dynamics of the pendulum is studied numerically and analytically.  相似文献   

17.
NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ~1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540?nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ~372-948?nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540?nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850?nm alone, the high-reflectance side of the red edge, could be sufficient to establish periodicity in the light curve and deduce Earth's diurnal period and the existence of fixed surface units.  相似文献   

18.
The space elevator will operate in near-Earth space, under the attraction of the Earth, the Moon and the Sun. It will have to avoid collisions with active satellites, with space debris and with meteoroids, not counting other minor adverse phenomena. The exceedingly long cable cannot be a passive and limp body. It must be an active part of the elevator, withstanding lunisolar and other perturbations threatening its stability. The cable must have sensors and thrusters at appropriate locations along the cable. Sensors would serve for detection of objects on a collision course and thrusters for station-keeping and for initiating evasive manoeuvres. Adaptive control must be used for that purpose. Extensive series of numerical simulations will have to be performed to ascertain that the elevator is stable and that possible oscillations do not interfere with the main function of the elevator.  相似文献   

19.
Claudio Maccone   《Acta Astronautica》2004,55(12):991-1006
A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth–Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth).

We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement.

An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to:

1. Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
2. add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
3. encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see “which asteroids could be diverted by which missiles”, even in the very simplified scheme outlined here.

Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could possibly mark the beginning of an “all embracing” mathematical vision of Planetary Defense beyond all learned activities, dramatic movies and unknown military plans covered by secret.  相似文献   


20.
A novel statistical method has been devised for evaluating the ground and the sky coverage of an observation experiment on board a satellite. Owing to its unrivalled rapidity compared with other conventional calculation techniques, the method can be applied to evaluate the coverage percentages for the whole globe or any area on it, to calculate the visibility percentages for one or more ground stations and to determine the percentages of observation time of any given celestial direction including Sun, Moon, Earth and Ground Stations constraints. The orbits considered can be elliptical and account is taken of the drift due to the Earth's oblateness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号