首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mouse calvarial cells grown under simulated microgravity conditions (neutral buoyancy) show preferential differentiation towards the osteoclast lineage, as defined by surrogate mRNAs, bone nodule growth and TRAP+ cells, when compared with cells cultured under normal gravity conditions. This effect was suppressed in cultures which contained the immunoregulatory molecule CD200, and conversely enhanced by anti-CD200 mAb. Concomitant increases occur in expression of inflammatory cytokines, and their mRNAs, under simulated microgravity conditions. Again cultures containing exogenous CD200 showed suppressed cytokine and cytokine mRNA expression. Further alterations in osteoclastogenesis were seen using cells isolated from cytokine-receptor knockout mice. We conclude that, as assessed by altered expression of mRNAs associated with osteoblast differentiation, CD200:CD200R interactions play an important regulatory role in the enhanced osteoclastogenesis seen under simulated microgravity conditions, with changes in cytokine expression further modulating this effect.  相似文献   

3.
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites).  相似文献   

4.
5.
Long duration space flight has shown us that humans have significant bone loss and mineral changes because they are living in microgravity. Skylab and the longer Salyut and Mir missions, are providing us useful data and allowing us to explore the mechanism involved in skeletal turnover. Bone redistribution occurs throughout space flight with bone loss predominately in the weight bearing bones of posture and locomotion. The primary health hazards which may occur during space flight induced by skeletal changes include signs and symptoms of hypercalcemia, and the risk of kidney stones and metastatic calcification. After flight lengthy recovery of bone mass and the possible increase in the risk of bone fracture should be considered. Continued research studies are being directed toward determining the mechanisms by which bone is lost in space and developing more effective countermeasures by both the US (Schneider and McDonald, 1984 and Schneider, LeBlanc & Huntoon, 1993) and Russian (Grigoriev et. al., 1989) space programs.  相似文献   

6.
7.
Chiu B  Wan JZ  Abley D  Akabutu J 《Acta Astronautica》2005,56(9-12):918-922
Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity (microg) may modulate the proliferation and differentiation. We investigated the application of microg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated microg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated microg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.  相似文献   

8.
王振汉  张立勋  薛峰  陈旭阳 《宇航学报》2022,43(9):1268-1276
针对航天员微重力作业训练系统的重力场补偿控制这一关键技术,进行了理论和实验研究。分析了模拟微重力环境的机理,确定了微重力作业训练系统的总体结构方案,提出了一种基于电流反馈的重力补偿控制及多干扰力补偿控制策略。通过虚拟重力补偿控制实验,验证了在地面环境、动态作业过程中,模拟物体在不同空间重力加速度环境下的运动规律,实现了在重力方向模拟空间环境下物体移动的作业训练效果。研究成果为在地面实现三维作业训练系统的控制奠定了基础。  相似文献   

9.
In the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by (R) Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground"). Furthermore, the ratio symmetrical:asymmetrical translocations was markedly elevated under simulated microgravity conditions, compared to the findings usually observed under "normal" 1g conditions. On these bases, we are much inclined to believe that simulated microgravity, rather than limiting the resealing of DNA double strand breaks (DSB's) induced by genotoxic agents is influencing in terms of enhancement the misrejoining of DSB's which is actually responsible for the fixation of the original lesions to DNA into chromosomal aberrations. In addition, the possible different misrepair processes leading to the formation of symmetrical and asymmetrical translocations might be differentially influenced by microgravity being the symmetrical translocations significantly more represented.  相似文献   

10.
This paper briefly reviews the subject of bone remodelling and calcium homeostasis and considers the changes that occur in the microgravity environment of space. The effectiveness of exercise as a countermeasure to bone demineralisation is discussed.  相似文献   

11.
Kinesin and kinesin-like proteins (KLPs) constitute a superfamily of microtubule motor proteins found in all eukaryotic organisms. Members of the kinesin superfamily are known to play important roles in many fundamental cellular and developmental processes. To date, few published studies have reported on the effects of microgravity on kinesin expression. In this paper, we describe the expression pattern and microgravity-sensitive genes of kinesin in rat bone marrow stromal cells cultured in a ground-based rotating bioreactor. The quantity of kinesin under the clinorotation condition was examined by immunoblot analysis with anti-kinesin. Furthermore, the distribution of kinesin at various times during clinorotation was determined by dual immunostaining, using anti-kinesin monoclonal antibody or anti-β-tubulin monoclonal antibody. In terms of kinesin quantity, we found that the ratios of the amounts of clinorotated/stationary KLPs decreased from clinorotation day 5 to day 10, although it increased on days 2 and 3. Immunofluorescence analysis revealed that kinesin in the nucleus was the first to be affected by simulated microgravity, following the kinesin at the periphery that was affected at various times during clinorotation. Real-time RT-PCR analysis of kinesin mRNA expression was performed and led to the identification of 3 microgravity-sensitive kinesin genes: KIF9, KIFC1, and KIF21A. Our results suggest that kinesin has a distinct expression pattern, and the identification of microgravity-sensitive kinesin genes offers insight into fundamental cell biology.  相似文献   

12.
13.
The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.  相似文献   

14.
Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.  相似文献   

15.
Background: Both microgravity and simulated microgravity models, such as the 45HDT (45 degrees head-down tilt), cause a redistribution of body fluids indicating a possible adaptive process to the microgravity stressor. Understanding the physiological processes that occur in microgravity is a first step to developing countermeasures to stop its harmful effects, i.e., (edema, motion sickness) during long-term space flights. Hypothesis: Because of the kidneys' functional role in the regulation of fluid volume in the body, it plays a key role in the body's adaptation to microgravity. Methods: Rats were injected intramuscularly with a radioactive tracer and then lightly anesthetized in order to facilitate their placement in the 45HDT position. They were then placed in the 45HDT position using a specially designed ramp (45HDT group) or prone position (control group) for an experimental time period of 1 h. During this period, the 99mTc-DTPA (technetium-labeled diethylenepentaacetate, MW=492 amu, physical half-life of 6.02 h) radioactive tracer clearance rate was determined by measuring gamma counts per minute. The kidneys were then fixed and sectioned for electron microscopy. A point counting method was used to quantitate intracellular spaces of the kidney proximal tubules. Results: 45HDT animals show a significantly (p=0.0001) increased area in the interstitial space of the proximal tubules. Conclusions: There are significant changes in the kidneys during a 1 h exposure to a simulated microgravity environment that consist primarily of anatomical alterations in the kidney proximal tubules. The kidneys also appear to respond differently to the initial periods of head-down tilt.  相似文献   

16.
An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction.  相似文献   

17.
刘福才  曹志琼  张晓  李倩 《宇航学报》2020,41(11):1456-1465
为了分析空间机构在不同重力环境中的驱动力差异,以单关节机械臂为研究对象,进行不同重力环境下直流电机驱动力差异分析。首先基于拉格朗日方程推导出单关节机械臂的动力学模型,为分析不同重力环境下,负载、摩擦和转速的变化对电机驱动力的影响,通过设计一套基于单关节驱动的机械臂试验装置,进行地面重力环境、地面模拟微重力环境和落塔微重力环境试验。然后基于试验数据详细分析了不同重力环境下空间机构电机驱动电流的差异,并基于试验数据对电机动力学方程中的摩擦参数进行辨识,从而获得基于试验数据修正的机械臂动力学仿真模型,为空间机构动力学设计与应用提供理论与试验依据。  相似文献   

18.
Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.  相似文献   

19.
Sleep in space     
Manned space flights have shown it is possible to sleep in microgravity. However, some sleep disturbances have been reported which influence performance of the crew and safety of space flight. This paper reviews the main studies of in-flight sleep in animal and man. Most disturbances are related to phase lags due to operational requirements. Factors which can disturb in-flight sleep are analysed: environmental factors. Some of them are secondary to space flight ergonomics. Conversely, effects of microgravity on light-dark alternance are less known and lead to interesting problems of fundamental research, psychological factors, especially during long duration flights.  相似文献   

20.
Li GB  Liu YD  Wang GH  Song LR 《Acta Astronautica》2004,55(11):953-957
It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of glutathione [correction of gluathione], an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号