首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
刘闯  崔海涛 《航空动力学报》2015,30(10):2346-2351
总结回顾了奇异积分方程的数值解法,对于第二类奇异积分方程使用分段连续函数法进行了求解;对于两个弹性体接触问题,通过接触体之间的滑移函数和间隙函数,建立求解接触压力的奇异积分方程.分别针对圆柱体与弹性半空间体、抛物线型压头与弹性半空间体、榫头与榫槽3类接触问题,确立奇异积分方程的具体表达式,而后使用分段连续函数方法进行求解,获得接触面上的接触压力.最后将计算所得的接触压力分别与理论解和有限元解进行了对比.对于圆柱体与弹性半空间体接触问题,奇异积分方程法的最大接触压力与理论解和有限元解的相对误差分别为0.3%和0.5%;对于榫头与榫槽接触问题,奇异积分方程方法计算所得的最大接触压力与有限元解的相对误差为1.8%,验证了奇异积分方程方法的有效性.   相似文献   

2.
涡轮复杂气冷叶盘结构变形分析模型简化方法   总被引:1,自引:0,他引:1  
基于高压转子开展高压(HP)涡轮转子叶片叶尖变形分析可提高叶尖间隙的数值模拟精度,而高压涡轮转子叶片由于其复杂的气冷结构,有限元分析网格数量巨大;叶片和轮盘的榫接结构属于非线性分析,也需要足够的计算机时。针对该问题提出了一种复杂气冷叶片的简化方法和榫接结构接触计算简化方法,在不影响计算精度的前提下提高计算效率。采用该方法对典型结构高压涡轮转子进行了变形分析,与采用复杂气冷叶片模型和接触分析方法的变形分析结果进行比较。结果表明:涡轮叶片叶尖最大径向变形相对误差为0.47%,计算机时减少99%,证明简化方法和计算方法的有效性。   相似文献   

3.
为有效减小航空发动机静子系统动力特性计算的有限元模型规模,针对压气机静子叶片结构,提出了1种基于截面等效原理的建模简化方法。首先通过1个静子叶片的8、6、4和2截面4种有限元模型的简化和计算说明了该方法的有效性;然后进一步以某型航空发动机压气机的第1级整流器为例,对上述方法进行了计算验证。结果表明:4种简化模型的前5阶固有频率计算结果最大误差分别为2.72%、4.23%、4.73%和7.32%,模态振型吻合良好;简化后的模型规模缩减为原模型的2%~3%,计算时间缩短为原模型的1%~2%。  相似文献   

4.
为了降低航空发动机非线性模型求解的收敛性要求,将模型非线性方程组的求解问题转化为最小二乘问题,提出了基于Levenberg-Marquardt(L-M)算法的混合算法。为了使L-M算法跳出局部解,混合算法使用动力学方法修正局部解;为了提高计算效率,利用Broyden拟牛顿法加速L-M算法。以涡扇发动机为研究对象,应用混合算法、L-M算法、牛顿法和Broyden拟牛顿法进行稳态和瞬态仿真。结果表明:在稳态工况下,L-M算法和混合算法收敛范围更大,在随机初值条件下能达到90%以上的收敛率,远高于牛顿法和Broyden拟牛顿法不到20%的收敛率,且混合算法计算速度与Broyden拟牛顿法相当。在瞬态工况下,L-M算法和混合算法能够在牛顿法和Broyden拟牛顿法都不收敛的强瞬变工况收敛,且混合算法瞬态计算时间仅为Broyden拟牛顿法的1.13倍。仿真结果表明该算法在航空发动机模型求解上具有良好的适用性。  相似文献   

5.
刘晓恒  周成华  宋满祥  金东海  桂幸民 《航空学报》2020,41(1):123199-123199
采用轴对称方法对带有黏性力的三维Euler方程组进行降维,利用时间推进方法求解,得到适用于航空发动机整机计算的准三维数值仿真软件,并对某涡喷发动机整机进行设计点和非设计点数值模拟。首先,对地面静止状态节流特性进行研究,将计算结果与试验数据对比可知:推力的最大相对误差为-5.1%,单位燃油消耗率的最大相对误差为+4.8%,相对转速为95%时,单位燃油消耗率最低;其次,获取了飞行马赫数为0.7工况下的高度特性以及飞行高度为3 km工况下的速度特性,将计算结果与设计参数对比可知:对于高度特性,推力的最大相对误差为-4.61%,单位燃油消耗率的最大相对误差为+5%,对于速度特性,推力的最大相对误差为-5.83%,单位燃油消耗率的最大相对误差为+5.92%;再次,分别对压气机/涡轮进行部件模拟,预测了发动机的共同工作线;最后,对发动机设计工况下的流场以及气动参数的展向分布进行了分析。  相似文献   

6.
带冠涡轮叶片振动特性的子区间组合分析方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘继兴  张大义  王存  洪杰 《推进技术》2017,38(10):2323-2330
为准确计算分析带冠涡轮叶片振动特性的非确定性问题,将区间组合法与有限元法相结合,发展了适用于复杂结构振动特性的区间求解方法,并建立了基于商用有限元软件的区间振动特性求解流程。考虑工况温度、叶冠接触状态和榫头约束角刚度的分散性,对带冠涡轮叶片的模态特性和振动响应进行了求解,研究得到了典型结构、载荷等非确定性参数对叶片振动特性的影响规律。研究结果表明,与蒙特卡洛法相比,该方法可使计算效率提高10倍以上,计算结果的相对误差不大于50%,获得振动特性的区间结果更为可靠,并且该方法无需对非确定性参数的概率分布进行假设,具有良好的工程应用前景。  相似文献   

7.
为了解决目前稳态空气系统算法在求解复杂网络时不容易获得收敛解的问题,将航空发动机稳态空气系统简化为由节点和元件组成的网络,借助概率思想计算连续性方程和能量方程,建立相应的随机游动模型,运用蒙特卡罗方法求解各节点的压力,再根据流量与元件两端压力的关系,计算流经各元件的流体流量。将计算得到的不同工况下航空发动机稳态空气系统内部节点的压力和流量值,与flowmaster计算结果进行比较,二者吻合较好,压力最大偏差为0.628%。蒙特卡罗方法与网络法相比,优势在于计算简便,且不会出现无法求解复杂空气系统网络的情况。  相似文献   

8.
各向异性陶瓷基复合材料涡轮叶片概率性热分析方法   总被引:1,自引:0,他引:1  
考虑陶瓷基复合材料等纤维增韧复合材料导热系数的各向异性及分散性,建立了基于概率统计的陶瓷基复合材料涡轮叶片热分析方法。研究中以Mark Ⅱ涡轮叶片冷却结构为例,综合利用有限元方法和蒙特卡洛方法,分析了应用陶瓷基复合材料后的温度场均值和波动特性。计算中将导热系数作为随机输入参数,分析了导热系数各向异性及其分散度对叶片前缘滞止点温度、尾缘温度以及高温区域(T>900K)面积的影响。计算中发现在本文的计算工况下,考虑导热系数存在正态波动情况时,叶片前缘滞止点、尾缘温度波动也满足正态分布。前缘滞止点温度在导热系数变异系数为01,导热系数比为2时其温度波动最大,相比12731K的均温,有16%的概率超温913K。尾缘温度在导热系数变异系数为01,导热系数比为10时波动最大,有16%的概率超过均值11529K达527K。计算结果表明:导热系数分散度所带来的波动,会导致叶片内部高温关注区域(T>900K)的面积增大,并且高温关注区域相对增加量ΔShot随导热系数变异系数α的增加而增加。计算结果表明,高温关注区域相对增加量最大发生在导热系数比为2,变异系数为0.1时,此时ΔShot=4.8%。   相似文献   

9.
大小叶盘结构连续参数模型和振动模态   总被引:1,自引:1,他引:0  
给出了用于研究大小叶片整体叶盘结构固有振动特性分析的连续参数模型。模型用 Timoshinko梁模拟叶片 ,用平板模拟轮盘 ,并在叶片和轮盘间引入弹簧元件模拟叶片和轮盘间的耦合关系 ,简化了两者间的边界条件和连续性条件。采用 Gram-Schmidt方法生成正交多项式作为李兹容许函数进行模型的离散化 ,简化了所得到的频率方程求解过程 ,有利于求解过程的数值稳定性 ,并可方便地通过对方程系数性质的分析了解结构振动模态的性质。利用上述的分析原理和求解方法 ,进行了简化的大小叶片整体叶盘结构的计算 ,计算结果与有限元计算结果具有很好的一致性   相似文献   

10.
求解跨声速压气机叶栅粘性流动反问题的数值解   总被引:3,自引:3,他引:0       下载免费PDF全文
阐述了一种以有限体积的时间推进方法为基础求解跨声速压气机叶栅设计的反问题方法。应用这一技术设计叶型,规定叶片表面无量纲目标速度分布,通过比较目标速度分布和计算获得的速度分布来修改叶片压力面和吸力面的坐标,最终获得要求的叶片形状。计算程序使用分布体力方法模拟粘性,用局部时间步长和多重网格方法加速收敛。还介绍了这种方法求解的基本方程系统,并给出了采用这种方法设计的无激波超临界跨声速压气机叶栅的设计结果。  相似文献   

11.
本采用有限体积法进行空间离散,Runge-Kutta法进行时间推进的办法,通过求解Euler方程来模拟二元收敛-扩散喷管跨音速流场。运用隐式残差平均技术和当地时间步长法加速计算收敛。为了消除气流参数的波动和激波前后的振荡,在方程中添加了自适应耗散项。在100个时间步以内便可获得稳态解,计算结果与试验数据和其他数值方法吻合良好。  相似文献   

12.
建立了电热除冰系统矩形微段的二维简化物理模型,采用焓法模型建立相变导热问题的微分控制方程,用控制容积法对该模型的控制方程及其边界、初始条件进行离散,使用块修正技术对原有的离散方程组的求解方法进行了改进,得到各个时刻的温度分布及冰的融解情况。计算结果与国外文献结果吻合,验证了改进的算法和程序的正确性。并计算分析了时间步长的选择、网格的划分对计算结果的影响。  相似文献   

13.
胡锦文  成晓鸣  董斌  于明 《推进技术》2018,39(5):1105-1110
为了在工程设计阶段评估涡轮叶片在多工况下的蠕变变形,基于单工况的等时应力应变曲线,提出了一种等效等时应力应变曲线的方法,并与发动机持久试车实例进行了分析比较。结果表明:基于等效等时应力应变曲线方法所计算的涡轮叶片卸载后的残余变形与发动机持久试车结果的相对误差的平均值为15.30%,而通常所采用的基于二维梁理论和基于时间步的三维有限元分析方法所计算的相对误差的平均值分别为45.35%,31.14%,表明该种方法具有较好的工程应用性。  相似文献   

14.
王磊  毛军逵  邱长波  赵伟  何辉 《推进技术》2021,42(11):2506-2514
针对目前航空发动机空气系统稳态算法中收敛性依赖初值的问题,将蒙特卡罗方法与流体网络法综合应用到空气系统可压缩流体一维网络计算中,提出了一种新的计算方法Monte Carlo-Fluid Network(MC-FN)。该方法将空气系统简化为由节点和元件组成的网络,借助蒙特卡罗方法获得空气系统内各节点压力分配,再根据空气系统中各元件流阻特性和换热特性计算流量、温度。计算中通过将游动次数比较少的蒙特卡罗方法的计算结果作为流量残差法节点压力、温度的初始值,实现快速求得精确收敛解。与流量残差算法相比,MC-FN方法计算精度不变,收敛速度提升了66.5%;与线性求解法相比,MC-FN方法的计算精度提升了25.2%,收敛速度提升了43.8%。  相似文献   

15.
本采用时间分裂显式格式求解Euler方程,获得了跨音速压回转叶片排中的三维流场解。研究了三维扭曲网格的生成,边界条件的处理以及保证稳定和提高流场分辨率的措施等问题。计算结果与实测三维流场的对比表明了本方法的可靠性。对某型高负荷跨音速压气机第一级转子叶片排所作的流场分析计算,为判断该叶片排流场品质,分析叶片设计的合理性提供了依据,证明了本方法的工程实用性。  相似文献   

16.
为了提高涡轮叶片对流冷却模型预测精度,提出了一种在叶片固壁内同时考虑叶片径向和垂直于壁面方向(法向)导热的二维对流冷却模型。该模型在弦长方向划分多个元素,忽略元素内弦长方向叶片温度变化,在元素内的径向和法向建立二维导热方程作为叶片固壁温度场的控制方程,其边界条件包括叶表燃气绝热温度、燃气侧对流换热系数和叶片叶根、叶顶热流密度等。给出了该模型二维导热方程和边界条件的差分求解方法。以E~3涡轮高压导叶为例,将模型与CFD计算的叶片外壁面温度分布进行了对比。结果表明,该模型在给定冷气量下预测的叶片温度分布变化趋势与CFD相近,最大温度误差不超过6.5%,计算时间与CFD相比缩短了95%,能够快速、准确预测涡轮对流冷却叶片的冷气需求量。  相似文献   

17.
为准确得到超临界压力下RP-3的热物性,基于人工神经网络(ANN)方法建立超临界RP-3的密度、黏度、比定压热容和导热系数的计算模型。以广义对应态法则计算得到的RP-3热物性结果训练神经网络,并耦合了实验误差模型得到修正后的ANN模型。计算温度变化范围为300~800 K,压力变化范围为3~6 MPa。结果表明:ANN模型能准确地预测超临界RP-3的热物性,且计算精度比广义对应态法则计算得到的结果提高了16.3%。在压力为5 MPa的工况下,ANN模型预测的密度、黏度、比定压热容和导热系数的回归系数均大于0.99,与实验结果平均相对误差分别为1.5%、4.1%、0.9%和0.7%。  相似文献   

18.
应用特征线法求解航空发动机瞬态空气系统   总被引:3,自引:1,他引:2  
吴宏  胡肖肖 《航空动力学报》2013,28(9):2003-2008
用特征线法求解瞬态航空发动机空气系统的连续方程和动量方程,单独迭代求解能量方程.计算了空气系统内流体的压力、质量流量、温度随时间的变化规律.结果表明内部节点的压力、质量流量以相近的趋势随进口压力变化,但有相应的延迟,延迟时间约为0.01s,温度随边界温度变化而变化.将准静态结果与软件Flowmaster的模拟结果对比,吻合很好,压力最大相对误差为0.051%.   相似文献   

19.
郑小清  曾军 《航空动力学报》1992,7(4):312-314,393
本文采用有限体积法进行空间离散,Runge-Kutta法进行时间推进的办法,通过求解Euler方程来模拟二元收敛—扩散喷管跨音速流场。运用隐式残差平均技术和当地时间步长法加速计算收敛。为了消除气流参数的波动和激波前后的振荡,在方程中添加了自适应耗散项。在100个时间步以内便可获得稳态解。计算结果与试验数据和其他数值方法吻合良好。   相似文献   

20.
本文用时间推进法求解欧拉方程组计算二维平面叶栅绕流问题数值实验是否有多重解现象。计算结果表明,求解欧拉方程组进行流场数值模拟最终收敛与初场无关,不存在解不唯一问题,进而计算初场熵值大小,也发现初场熵值大小不影响终场结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号