首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
3.
This paper reviews the coupling between the solar wind, magnetosphere and ionosphere. The coupling between the solar wind and Earth’s magnetosphere is controlled by the orientation of the Interplanetary Magnetic Field (IMF). When the IMF has a southward component, the coupling is strongest and the ionospheric convection pattern that is generated is a simple twin cell pattern with anti-sunward flow across the polar cap and return, sunward flow at lower latitudes. When the IMF is northward, the ionospheric convection pattern is more complex, involving flow driven by reconnection between the IMF and the tail lobe field, which is sunward in the polar cap near noon. Typically four cells are found when the IMF is northward, and the convection pattern is also more contracted under these conditions. The presence of a strong Y (dawn-dusk) component to the IMF leads to asymmetries in the flow pattern. Reconnection, however, is typically transient in nature both at the dayside magnetopause and in the geomagnetic tail. The transient events at the dayside are referred to as flux transfer events (FTEs), while the substorm process illustrates the transient nature of reconnection in the tail. The transient nature of reconnection lead to the proposal of an alternative model for flow stimulation which is termed the expanding/contracting polar cap boundary model. In this model, the addition to, or removal from, the polar cap of magnetic flux stimulates flow as the polar cap boundary seeks to return to an equilibrium position. The resulting average patterns of flow are therefore a summation of the addition of open flux to the polar cap at the dayside and the removal of flux from the polar cap in the nightside. This paper reviews progress over the last decade in our understanding of ionospheric convection that is driven by transient reconnection such as FTEs as well as by reconnection in the tail during substorms in the context of a simple model of the variation of open magnetic flux. In this model, the polar cap expands when the reconnection rate is higher at the dayside magnetopause than in the tail and contracts when the opposite is the case. By measuring the size of the polar cap, the dynamics of the open flux in the tail can be followed on a large scale.  相似文献   

4.
The main effects caused by the interplanetary magnetic field (IMF) are analyzed in cases of supersonic solar wind flow around magnetized planets (like Earth) and nonmagnetized (like Venus) planets. The IMF has a relatively weak strength in the solar wind but it is enhanced considerably in the so-called plasma depletion layer or magnetic barrier in the vicinity of the streamlined obstacle (magnetopause of a magnetized planet, or ionopause of a nonmagnetized planet). For magnetized planets, the magnetic barrier is a source of free magnetic energy for magnetic reconnection in cases of large magnetic shear at the magnetopause. For nonmagnetized planets, mass loading of the ionospheric particles is very important. The new created ions are accelerated by the electric field related to the IMF, and thus they gain energy from the solar wind plasma. These ions form the boundary layer within the magnetic barrier. This mass loading process affects considerably the profiles of the magnetic field and plasma parameters in the flow region.  相似文献   

5.
Fuselier  S.A.  Mende  S.B.  Moore  T.E.  Frey  H.U.  Petrinec  S.M.  Claflin  E.S.  Collier  M.R. 《Space Science Reviews》2003,109(1-4):285-312
One of the IMAGE mission science goals is to understand the dayside auroral oval and its dynamic relationship to the magnetosphere. Two ways the auroral oval is dynamically coupled to the magnetosphere are through the injection of magnetosheath plasma into the magnetospheric cusps and through the ejection of ionospheric plasma into the magnetosphere. The ionospheric footpoints of the Earth's magnetospheric cusps are relatively narrow regions in invariant latitude that map magnetically to the magnetopause. Monitoring the cusp reveals two important aspects of magnetic reconnection at the magnetopause. Continuous cusp observations reveal the relative contributions of quasi-steady versus impulsive reconnection to the overall transfer of mass, energy, and momentum across the magnetopause. The location of the cusp is used to determine where magnetic reconnection is occurring on the magnetopause. Of particular interest is the distinction between anti-parallel reconnection, where the magnetosheath and magnetospheric field lines are strictly anti-parallel, and component merging, where the magnetosheath and magnetospheric field lines have one component that is anti-parallel. IMAGE observations suggest that quasi-steady, anti-parallel reconnection is occurring in regions at the dayside magnetopause. However, it is difficult to rule out additional component reconnection using these observations. The ionospheric footpoint of the cusp is also a region of relatively intense ionospheric outflow. Since outflow also occurs in other regions of the auroral oval, one of the long-standing problems has been to determine the relative contributions of the cusp/cleft and the rest of the auroral oval to the overall ionospheric ion content in the Earth's magnetosphere. While the nature of ionospheric outflow has made it difficult to resolve this long-standing problem, the new neutral atom images from IMAGE have provided important evidence that ionospheric outflow is strongly controlled by solar wind input, is `prompt' in response to changes in the solar wind, and may have very narrow and distinct pitch angle structures and charge exchange altitudes.  相似文献   

6.
Two ideas were advanced for the process of solar wind-magnetospheric interaction in the same year 1961. Dungey suggested that the interplanetary magnetic field (IMF), although weak, might determine the nature of this process by magnetic reconnection as the solar wind plasma flows across the separatrix surface which divides the IMF from the geomagnetic field. Axford and Hines pointed out that the flow inside the magnetopause is in the same sense as the magnetosheath flow and appears to be viscously coupled. Within a few years the dependence of geomagnetic activity on the IMF predicted by Dungey's mechanism was observed, and reconnection began to dominate current theories. One difficulty, that of the implied dissipation at the magnetopause, was troublesome; however, the ISEE-1/2 observations of the predicted high speed flows on several occasions was enough to convince many persons that reconnection ideas were basically correct. Several investigators found some evidence in the ISEE-3 data in the distant magnetotail for the steady-state reconnection line, as demanded by the Dungey model, in the form of a southward sense of the magnetic field through the current sheet. Here, again, there is some hard contrary evidence when the data are analyzed exactly at the cross-tail current sheet: the instantaneous values show a northward sense, even at high values of auroral activity. Coupled with the anti-Sunward plasma flow, this repudiates the steady-state Dungey model. On the other hand, it lends strong support to some kind of viscous effect through the medium of the magnetospheric boundary layer. This is not a semantic problem, as the sense of the electric field (as well as the magnetic field) is opposite for the two cases. The downfall of the reconnection model is its implicit use of frozen-field convection; this problem is obvious when the problem is viewed in three dimensions. Instead, the view is taken that the relevant process must be essentially time-dependent, three-dimensional, and localized. It is proposed that the term merging be used for this generalized timedependent form of reconnection. The merging process (whatever it is) must permit solar wind plasma to cross the magnetopause onto closed field lines of the boundary layer. Once it is there, it provides the viscous-like effect that Axford and Hines had envisaged.  相似文献   

7.
A dependence of the polar cap magnetic flux on the interplanetary magnetic field and on the solar wind dynamic pressure is studied. The model calculations of the polar cap and auroral oval magnetic fluxes at the ionospheric level are presented. The obtained functions are based on the paraboloid magnetospheric model calculations. The scaling law for the polar cap diameter changing for different subsolar distances is demonstrated. Quiet conditions are used to compare theoretical results with the UV images of the Earth’s polar region obtained onboard the Polar and IMAGE spacecrafts. The model calculations enable finding not only the average polar cap magnetic flux but also the extreme values of the polar cap and auroral oval magnetic fluxes. These values can be attained in the course of the severe magnetic storm. Spectacular aurora often can be seen at midlatitude during severe magnetic storm. In particularly, the Bastille Day storm of July 15–16, 2000, was a severe magnetic storm when auroral displays were reported at midlatitudes. Enhancement of global magnetospheric current systems (ring current and tail current) and corresponding reconstruction of the magnetospheric structure is a reason for the equatorward displacement of the auroral zone. But at the start of the studied event the contracted polar cap and auroral oval were observed. In this case, the sudden solar wind pressure pulse was associated with a simultaneous northward IMF turning. Such IMF and solar wind pressure behavior is a cause of the observed aurora dynamics.  相似文献   

8.
A review is given on the distribution and origin of the large-scale electric field in the magnetosphere and its influence on the dynamical behavior of the magnetospheric plasma. Following a general discussion on the gross structure of the magnetosphere and its tail, two principal electric field systems are deduced from ground-based geomagnetic variations. One is responsible for the polar substorm, the DP 1 field, which is closely associated with the activation of the auroral electrojet. The other is responsible for the twin current vortices, the DP 2 field, and this represents the general convective system set up in the magnetospheric plasma.The origin of these magnetospheric electric fields is possibly resided in the domain of the solar wind interacting with the outer geomagnetic field. However, the mechanism, in which the energy is transferred, is still quite controversial. Several theories so far proposed are re-examined, and some modification of them are suggested to have a consistent understanding of these two types of electric fields. The effects of electric fields on magnetospheric plasma dynamics are described, such as the formation of the plasmapause, the acceleration and diffusion of energetic particles in the radiation belt.  相似文献   

9.
MESSENGER: Exploring Mercury’s Magnetosphere   总被引:1,自引:0,他引:1  
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.  相似文献   

10.
A brief summary is presented of recent progress in estimating the rates of energy, momentum and mass transport of the solar wind through the magnetopause in terms of an analysis of the non-linear stage of various plasma instabilities. It is shown that the energy supply to the Earth's magnetosphere is due to reconnection on the dayside magnetopause and its dissipation during magnetospheric substorms, being controlled by both the interplanetary field parameters and by the dynamic pressure of the solar wind.  相似文献   

11.
Consequences of the solar wind input observed as large scale magnetotail dynamics during substorms are reviewed, highlighting results from statistical studies as well as global magnetosphere/ionosphere observations. Among the different solar wind input parameters, the most essential one to initiate reconnection relatively close to the Earth is a southward IMF or a solar wind dawn-to-dusk electric field. Larger substorms are associated with such reconnection events closer to the Earth and the magnetotail can accumulate larger amounts of energy before its onset. Yet, how and to what extent the magnetotail configuration before substorm onset differs for different solar wind driver is still to be understood. A strong solar wind dawn-to-dusk electric field is, however, only a necessary condition for a strong substorm, but not a sufficient one. That is, there are intervals when the solar wind input is processed in the magnetotail without the usual substorm cycle, suggesting different modes of flux transport. Furthermore, recent global observations suggest that the magnetotail response during the substorm expansion phase can be also controlled by plasma sheet density, which is coupled to the solar wind on larger time-scales than the substorm cycle. To explain the substorm dynamics it is therefore important to understand the different modes of energy, momentum, and mass transport within the magnetosphere as a consequence of different types of solar wind-magnetosphere interaction with different time-scales that control the overall magnetotail configuration, in addition to the internal current sheet instabilities leading to large scale tail current sheet dissipation.  相似文献   

12.
Echim  M.M.  Lemaire  J.F. 《Space Science Reviews》2000,92(3-4):565-601
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.  相似文献   

13.
Energetic (0.1-16 keV/e) ion data from a plasma composition experiment on the ISEE-1 spacecraft show that Earth's plasma sheet (inside of 23 RE) always has a large population of H+ and He++ ions, the two principal ionic components of the solar wind. This population is the largest, in terms of both number density and spatial thickness, during extended periods of northward interplanetary magnetic field (IMF) and is then also the most "solar wind-like" in the sense that the He++/H+ density ratio is at its peak (about 3% on average in 1978 and 79) and the H+ and He++ have mean (thermal) energies that are in the ratio of about 1:4 and barely exceed the typical bulk flow energy in the solar wind. During geomagnetically active times, associated with southward turnings of the IMF, the H+ and He++ are heated in the central plasma sheet, and reduced in density. Even when the IMF is southward, these ions can be found with lower solar wind-like energies closer to the tail lobes, at least during plasma sheet thinning in the early phase of substorms, when they are often seen to flow tailward, approximately along the magnetic field, at a slow to moderate speed (of order 100 km s-1 or less). These tailward flows, combined with the large density and generally solar wind-like energies of plasma sheet H+ and He++ ions during times of northward IMF, are interpreted to mean that the solar wind enters along the tail flanks, in a region between the lobes and the central plasma sheet, propelled inward by ExB drift associated with the electric fringe field of the low latitude magnetopause boundary layer (LLBL). In order to complete this scenario, it is argued that the rapid (of order 1000 km s-1) earthward ion flows (mostly H+ ions), also along the magnetic field, that are more typically the precursors of plasma sheet "recovery" during substorm expansion, are not proof of solar wind entry in the distant tail, but may instead be a time-of-flight effect associated with plasma sheet redistribution in a dipolarizing magnetic field.  相似文献   

14.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   

15.
Berchem  J.  Fuselier  S.A.  Petrinec  S.  Frey  H.U.  Burch  J.L. 《Space Science Reviews》2003,109(1-4):313-349
The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the IMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model, though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside ionosphere are enhanced. Overall the results of these initial comparisons between global MHD simulation results and IMAGE observations emphasize the interplay between reconnection and dynamic pressure processes at the dayside magnetopause, as well as the intricate connection between the bow shock and the auroral region.  相似文献   

16.
We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.  相似文献   

17.
This paper reviews recent developments in the understanding of the solar-wind magnetosphere interaction process in which the interplanetary magnetic field has been found to play a key role. Extensive correlative studies between the interplanetary magnetic field and the magnetospheric parameters have in the past few years yielded detailed information on the nature of the interaction process and have made possible to follow the sequence of events that are produced inside the magnetosphere in consequence of the solar-wind energy transfer. We summarize the observed effects of the interplanetary magnetic field, its north-south and east-west components in particular, found in various domains of the magnetosphere — dayside magnetopause, polar cap, magnetotail, auroral zone —, and present an overall picture of the solar-wind magnetosphere interaction process. Dungey's reconnected magnetosphere model is used as a frame of reference and the basic compatibility of the observations with this model is emphasized. In order to avoid overlap with other review articles in the series discussion on the energy conversion process inside the magnetosphere leading to the substorm phenomenon is kept to the minimal.  相似文献   

18.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   

19.
Most substorm researchers assume substorms to be caused by a unique large-scale process. However, a critical evaluation of substorm observations indicates that a new paradigm is needed to understand the substorm phenomenon and the magnetospheric dynamics in general. It is proposed here that substorms involve a number of physical processes covering over a wide range of spatial and temporal scales. Potential candidates include the kinetic or shear ballooning instability, the Kelvin-Helmholtz instability, the cross-field current instability, the tearing instability, and magnetic reconnection. An observational constraint on the qualified process for substorm onset is that it must be associated with magnetic field lines of auroral arcs since substorm onsets start with brightening of a pre-existing auroral arc. Which particular process dominates in a given substorm depends on the present and past states of the magnetosphere as well as the external solar wind. The magnetosphere is almost perpetually driven by the solar wind to be near a critical point and in a metastable state. Magnetospheric disturbances occur sporadically in multiple localized sites. A substorm is realized when the combined effect of these localized disturbances become global in extent, much like the system-wide activity in a sandpile or avalanche model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号