首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
顾新锋  简涛  何友  郝晓琳 《航空学报》2012,33(12):2261-2267
在采用球不变随机向量(SIRV)建模的非高斯杂波背景下,研究了导向矢量失配或未知时距离扩展目标的检测问题。先假设导向矢量已知,采用广义似然比检验(GLRT)得到每个距离单元的归一化匹配滤波器(NMF)统计量,再将多个距离单元的统计量进行非相干积累得到扩展目标的NMF积累检测器(NMFI),然后通过最大化检测统计量的方法,结合特征值分解技术,对导向矢量进行估计,提出了距离扩展目标的盲NMFI(B-NMFI)。仿真分析表明:当导向矢量失配时,NMFI的检测性能优于GLRT;当导向矢量未知时,B-NMFI能有效地检测目标,并且对不同方位的目标具有很好的鲁棒性。  相似文献   

2.
简涛  何友  苏峰  曲长文  顾新锋 《航空学报》2010,31(3):579-586
在球不变随机向量(SIRV)非高斯杂波背景下,研究了多脉冲相参雷达目标的自适应检测问题。假设杂波具有相同的协方差矩阵结构和可能相关的纹理分量,提出了新的协方差矩阵估计器,并获得了相应的自适应归一化匹配滤波器(ANMF)。理论分析表明,在估计杂波分组大小与实际情况匹配时,所获得的ANMF对杂波功率水平和协方差矩阵结构均具有恒虚警率(CFAR)特性。仿真结果表明:当估计的杂波分组大小失配时,所获得的ANMF具有近似CFAR特性,并进一步分析了不同参数变化对所提检测器性能的影响。与已有的ANMF相比,所获得的ANMF具有更好的检测性能,且迭代次数更小,其相对于已知杂波协方差矩阵的最优归一化匹配滤波器(NMF)的检测损失也更小,具有很好的实际应用前景。  相似文献   

3.
无需辅助数据的分布式目标自适应检测器   总被引:1,自引:0,他引:1  
简涛  苏峰  何友  李炳荣  顾雪峰 《航空学报》2011,32(8):1542-1547
在非高斯背景和没有辅助数据的条件下,研究了高分辨率雷达分布式目标的自适应检测问题.首先采用有序检测理论和协方差矩阵的迭代估计方法粗略估计散射点集合,进一步利用迭代估计方法获得协方差矩阵的近似最大似然估计,提出了无需辅助数据的自适应检测器(ADWSD).ADWSD在非高斯背景下具有近似恒虚警率特性,且检测性能远好于修正的...  相似文献   

4.
复合高斯杂波中距离扩展目标的迭代近似GLRT检测器   总被引:1,自引:0,他引:1  
顾新锋  简涛  何友  郝晓琳 《航空学报》2013,34(5):1140-1150
 研究了结构化的复合高斯杂波(CGC)背景中距离扩展目标自适应检测问题。针对异质杂波背景中的近似广义似然比检验(AGLRT-HTG)检测器应用于CGC背景中时存在一定的信杂比损失问题,结构化的复合高斯杂波采用自回归过程建模,结合近似广义似然比检验(AGLRT)方法和迭代估计思想,提出了CGC背景中距离扩展目标的迭代近似广义似然比检测器(RAGLRT-CGC)。从理论上分析了极限情况下RAGLRT-CGC虚警概率与检测门限关系的解析表达式。仿真结果表明,在CGC背景中,RAGLRT-CGC对不同多主散射点目标具有较好的鲁棒性,并且检测性能明显优于AGLRT-HTG。  相似文献   

5.
一种基于波形的距离扩展目标检测方法   总被引:4,自引:0,他引:4       下载免费PDF全文
针对高分辨率雷达距离扩展目标检测问题,提出了一种基于一维距离像波形的距离扩展目标检测器。分析了目标一维距离像的波形特点,对一维距离像的离散序列进行FFT变换,获得变换后的低频分量平均值与高频分量平均值的比值,以其中最大的比值作为检测统计量并进行有无目标的判决。仿真结果表明,此检测方法的检测性能要优于依赖于散射中心空间分布密度的广义似然比(SSD—GLRT,Spatial Scattering Density—Generalized Likelihood Ratio Test)检测器,并且明显优于基于波形熵的检测器。  相似文献   

6.
一种简化的机载MIMO雷达杂波特征相消器   总被引:1,自引:0,他引:1  
吕晖  冯大政  和洁  向聪 《航空学报》2011,32(5):866-872
针对机载多输入多输出(MIMO)雷达杂波抑制问题,提出一种简化的杂波特征相消器(EC).根据杂波在空时二维平面的先验分布离线构造杂波子空间.以此替代由协方差矩阵特征值分解(EVD)得到的杂波子空间,从而将最优权简化为一个确知投影矩阵与目标信号空时二维导向矢量的乘积,避免了传统EC方法中复杂的协方差矩阵估计和EVD运算,...  相似文献   

7.
贺霖  潘泉  赵永强  郑纪伟 《航空学报》2006,27(4):657-662
针对航拍高光谱图像中未知背景地物特征条件下小目标的检测问题,给出一种检测算法。利用目标的低概率特性,通过模糊聚类获取高光谱图像中背景的光谱特性;然后将高光谱数据向背景光谱信号的正交子空间及目标信号子空间投影以抑制背景和噪声信号;最后在特征层利用广义似然比检验构造出具有恒虚警特性的检测器,完成融合检测过程。理论分析和实验结果表明了算法的有效性。  相似文献   

8.
唐波  张玉  李科 《航空学报》2013,34(5):1174-1180
 为了改善训练样本数受限的非均匀杂波环境中的系统检测性能,研究了基于先验知识及其定量评估的自适应杂波抑制算法。提出了使用经真实杂波信息白化后的先验杂波协方差矩阵与单位矩阵之差的谱范数,来定量评估杂波先验知识的准确程度,并给出了真实杂波协方差矩阵未知时的矩阵谱范数估计方法。结合先验知识定量评估结果,获得了具有先验知识约束时的杂波协方差矩阵最大似然估计方法。分别基于多脉冲相参雷达以及空时自适应雷达进行了杂波建模,在此基础之上分析了算法性能。仿真结果证实了该算法优于使用样本协方差矩阵及先验杂波信息形成杂波抑制权值的性能。  相似文献   

9.
张天宇  郑坚  田卓尔  荣英佼  郭云飞  申屠晗 《航空学报》2019,40(8):322848-322848
针对杂波背景下的多雷达航迹融合时局部估计误差互协方差矩阵未知的问题,提出基于目标存在概率(PTE)的航迹融合算法,提升了正确航迹率和跟踪精度。首先,通过综合概率数据关联得到单接收站的目标航迹估计集合和对应的目标存在概率。然后,在局部估计误差互协方差矩阵未知的条件下,基于PTE信息提出不带记忆的综合广义凸组合航迹融合算法。进而将前一帧的融合状态进行反馈,提出带记忆的综合广义凸组合航迹融合算法。仿真验证了所提算法的有效性。  相似文献   

10.
海杂波的相关特性分为时间相关性和空间相关性,二者均与雷达系统参数、环境条件等多种因素有关。文章利用X波段雷达实测海杂波数据,重点研究了不同极化条件下海杂波的时间相关性、高低典型海况和不同入射余角条件下的海杂波距离向和方位向空间相关性。经大量实测数据验证表明,极化方式对海杂波强时间相关性影响较小,海杂波距离向空间相关性受海况影响较大、方位向相邻分辨单元空间相关性较弱,这些结论对于海杂波中目标检测方法优化设计具有重要意义。  相似文献   

11.
We design three statistical tests to ascertain whether radar data comply with the hypotheses of multivariate Gaussianity, spatial homogeneity, and covariance persymmetry, respectively. For the first issue we develop a statistical procedure based on quadratic distributional distances, which exploits the representation of Gaussian vectors in generalized spherical coordinates. As to the spatial homogeneity we propose a technique, based on the Kolmogorov-Smirnov (KS) test, relying on the properties of quadratic forms constructed from Gaussian vectors and Wishart distributed matrices. Finally, in order to analyze the persymmetry property of the disturbance covariance matrix, we design a testing procedure based on the generalized likelihood ratio test (GLRT). We thus apply the new tests to L-band experimentally measured clutter data, collected by the MIT Lincoln Laboratory Phase One radar, at the Katahdin Hill site. The results show that the multivariate Gaussian hypothesis for the considered data file is reasonable. On the contrary the assumption of spatial homogeneity can be done only within small clutter regions which, in general, exhibit also a persymmetric covariance matrix.  相似文献   

12.
Deals with the problem of detecting subspace random signals against correlated non-Gaussian clutter exploiting different degrees of knowledge on target and clutter statistical characteristics. The clutter process is modeled by the compound-Gaussian distribution. In the first part of the paper, the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector are sequentially derived both for the Gaussian and the compound-Gaussian scenarios. Different interpretations of the various detectors are provided to highlight the relationships and the differences among them. In particular, we show how the GLRT detector may be recast into an estimator-correlator form and into another form, namely a generalized whitening-matched filter (GWMF), which is the GLRT detector against Gaussian disturbance, compared with a data-dependent threshold. In the second part of this paper, the proposed detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters.  相似文献   

13.
Polarization diversity detection in compound-Gaussian clutter   总被引:1,自引:0,他引:1  
We present the problem of polarization diversity detection in compound-Gaussian clutter with unknown covariance matrix. To this end we assume that a set of secondary data, free of signal components and with the same covariance structure of the cell under test, is available. Due to the lack of a uniformly most powerful (UMP) detector we resort to a design procedure based upon the Rao and the Wald tests. Specifically we first derive the Rao and the Wald tests assuming that the covariance matrix is known, and then we substitute into the derived decision rules a suitable estimate of the clutter covariance. Interestingly, the newly proposed detectors share the constant false alarm rate (CFAR) property with respect to the texture statistical characterization. Moreover simulation results have shown that the Wald test based detector ensures a performance level higher than the Rao test. We have also conducted a further performance analysis, in the presence of real clutter data and in comparison with the previously proposed generalized likelihood ratio test (GLRT) based receivers, which highlights that, in general, the Wald test receiver outperforms its counterparts. Finally, since the newly proposed decision rules as well as the previously designed GLRTs do not ensure the CFAR property with respect to the clutter covariance matrix, we have developed a sensitivity analysis on the probability of false alarm (P/sub fa/), based on simulated clutter with covariance matrix estimated from real radar data. The results have shown that (P/sub fa/) is only slightly affected by variations in the clutter correlation properties and hence the CFARness is substantially achieved.  相似文献   

14.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

15.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   

16.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

17.
GLRT subspace detection for range and Doppler distributed targets   总被引:7,自引:0,他引:7  
A generalized likelihood ratio test (GLRT) is derived for adaptive detection of range and Doppler-distributed targets. The clutter is modeled as a spherically invariant random process (SIRP) and its texture component is range dependent (heterogeneous clutter). We suppose here that the speckle component covariance matrix is known or estimated thanks to a secondary data set. Thus, unknown parameters to be estimated are local texture values, the complex amplitudes and Doppler frequencies of all scattering centers. To do so, we use superresolution methods. The proposed detector assumes a priori knowledge on the spatial distribution of the target and has the precious property of having a constant false alarm rate (CFAR) with the assumption of a known speckle covariance matrix or by the use of frequency agility.  相似文献   

18.
The classical detection step in a monopulse radar system is based on the sum beam only,the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test(GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.  相似文献   

19.
In this paper, we consider the problem of robust radar detection in the presence of Gaussian disturbance with unknown covariance matrix. We design and assess three new robust adaptive detectors, capable of operating in the presence of unknown discrepancies between the nominal and the actual steering vector. Remarkably the new decision rules exhibit a bounded constant false alarm rate (CFAR) behavior and allow, through the regulation of a design parameter, to trade off target sensitivity with sidelobes energy rejection. Finally, computer simulations show that the proposed detectors achieve a visible performance improvement, in many situations of practical interest, over the traditional adaptive detection algorithms, especially in the presence of severe steering vector mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号