首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The agreement on remote sensing principles adopted by the UN General Assembly in late 1986 clarified the legal framework in the international environment. Investment decisions can now be made, and the agreement thus offers an important opportunity for commercial remote sensing. Several issues are still not settled, but there is time for governments to avoid political conflict which could affect international business relations. The creation of Intelsat and Inmarsat offers a model for international cooperation in remote sensing.  相似文献   

2.
Earth remote sensing (alongside communications) is one of the key application of Earth-orbiting satellites. Civilian satellites in the LANDSAT and SPOT series provide Earth images which have been used for a vast spectrum of applications in agriculture, meteorology, hydrology, urban planning and geology, to name but a few. In the defence sector, satellite remote sensing systems are a critical tool in strategic and tactical planning – for the countries which can afford them. To date, remote sensing satellites have fallen into one of these two categories: military missions driven by the requirement for very high resolution and orbital agility; and multipurpose civil satellites using general purpose sensors to serve a diverse community of end users. For military-style missions, the drive to high resolution sets the requirements for optics, attitude control and downlink data bandwidth. For civil missions, the requirement to satisfy multiple, diverse user applications forces compromises on spectral band and orbit selection. Although there are exceptions, many small satellite remote sensing missions carry on in this tradition, concentrating on ultra high resolution products for multiple user communities. This results in satellites costing on the order of US $100 M, not optimised for any particular application. This paper explores an alternative path to satellite remote sensing, aiming simultaneously to reduce cost and to optimise imaging products for specific applications. By decreasing the cost of the remote sensing satellite system to a critical point, it becomes appropriate to optimise the sensor's spectral and temporal characteristics to fit the requirements of a small, specialised user base. The critical engineering trade-off faced in a cost driven mission is how to reduce mission cost while still delivering a useful product to the selected user. At the Surrey Space Centre, we have pursued an engineering path using two dimensional CCD array sensors, commercial off-the-shelf lenses and gravity-gradient stabilised microsatellites. In spite of the inherent limitations of such systems, recent successes with the Thai Microsatellite Company's Thai-Phutt satellite show that a system costing in the region of US $3 million, can approach the spectral and spatial characteristics of LANDSAT. Surrey's UoSAT-12 minisatellite (to be launched April, 1999) will further develop this cost-driven approach to provide 10 m panchromatic resolution and 30 m multi-spectral resolution. This paper describes the Thai-Phutt and UoSAT-12 imaging systems, explaining the engineering methods and trade-offs. Although Surrey is presently the only centre presently pursuing such implementations, our paper shows that they deserve wider consideration.  相似文献   

3.
This Viewpoint argues that the 1986 UN Principles on Remote Sensing have failed to anticipate the growth and broadening of the Earth observation field and are now less relevant. It traces the development of remote sensing: from a narrow government-controlled base, three distinct sectors of military, civil (i.e. public) and commercial Earth observation can now be distinguished and the latter is making images ever more widely and easily available. There has been no international effort to adjust the international legal regime to this changing environment and even the USA's remote sensing policy has basically been reactive. It is impossible now to conceive an overarching remote sensing policy and the challenge will be to shape each sectoral regime appropriately.  相似文献   

4.
This paper examines the failure of the Earth Observation International Coordination Working Group to implement an International Earth Observation System. Tracing the history of both the Group and the mission concept, it explains the political and organizational failures that took place. It shows that these failures were linked to different approaches to international cooperation in Earth observation data policy. The main points of contention existed between Working Group members, NASA and ESA. NASA favored formal and binding legal arrangements, while ESA preferred to avoid institutionalized legal commitments. Success in coordinating and harmonizing data policy on a multilateral basis for Earth observation missions is more likely to be achieved by pursuing agreement on general principles and terms of reference than by seeking specific legal agreements.  相似文献   

5.
There is a growing realisation of the increasingly varied and interesting possibilities for the use of Earth observation data to ensure compliance with international obligations generally, and treaty obligations in particular. Most examinations of the application of Earth observation data to monitoring states’ compliance with international obligations focus on the environmental sector. This paper proposes the use of remote sensing satellites for the support of multilateral environmental agreements (MEAs), especially land monitoring MEAs such as the Convention on Biological Diversity (1992) and the Kyoto Protocol (1997). It discusses the uses of remote sensing for treaty implementation or enforcement in general, and the admissability of satellite imagery as legal proof, before examining how Earth observation-derived data could be of benefit to specific MEAs. As sensors become increasingly sophisticated the use of remote sensing in this area should grow but it needs to be supported by its more widespread legal recognition as proof.  相似文献   

6.
Instead of preparing for space warfare, the USA could make tremendous use of space activities to enhance global security. Arms control verification, environmental monitoring and international cooperation on space missions are important examples. International space year, 1992, could be the time to launch a triumphant effort such as an international mission to Mars.  相似文献   

7.
冻结轨道是一种稳定的轨道,地球、火星、月球的卫星因引力场的南北不对称,都存在冻结轨道.由于主星体引力场的不同,它们卫星的冻结轨道也有不同的特性.地球卫星的冻结执道的偏心率非常小,对卫星遥感非常有利,国内外已有相当多的近地遥感卫星采用这种轨道.月球卫星的冻结轨道偏心率随轨道倾角的不同有很大的变化,对月球卫星冻结轨道的研究...  相似文献   

8.
Technological advances in remote sensing capabilities, wider participation of commercial firms and the possibilities of ‘processing’ spatial data to create value-added information have given rise to a range of policy and legal issues in the geographic information (GI) field. How far satellite images can still be considered a ‘public good’, conflicts between commercial and national interests is becoming a major issue, especially where security is concerned, sovereignty and the rights of sensed states, shutter control vs transparency is debated, data access, IPR and infringement of privacy becoming more relevant are all discussed. At the same time, the societal and public good of GI is well accepted with innumerable national and international examples. It is clear that societies would greatly benefit from the proper use of GI. A multilateral debate to formulate a GI policy that will take account of these while ensuring that the full benefits of remote sensing are available to society is called for.  相似文献   

9.
面对越来越迫切的气象和气候预测及大气环境监测需求,利用主动星载仪器在全球范围内探测云和气溶胶参数成为快速发展的研究领域。相比被动遥感仪器,主动仪器可以获取云和气溶胶参数的垂直分布信息,这将在天气气候模式的改进方面发挥重要作用。通过云和气溶胶遥感需求分析,从雷达数据应用角度,首先介绍了数值模式对云和气溶胶的科学参数需求和定量需求,进一步分析了云和气溶胶联合观测的需求,以及星载微波激光雷达的探测特点;然后对国内外正在规划的星载云和气溶胶微波激光雷达探测任务进行了综述,包括仪器指标和数据产品设计;最后展望这一领域的应用前景。  相似文献   

10.
Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.  相似文献   

11.
In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.  相似文献   

12.
This paper discusses whether current international and national regulation of remote sensing activities achieves a true balance between proprietary interests of producers of remote sensing data and information and the needs of the community in accessing that data and information. By subjecting remote sensing data to general copyright restrictions that are often coupled with exclusive licences, irrespective of type or use of data and/or information, the development of important secondary information markets could be negatively hampered. In the long run, over-regulating access to space data may prove counter-productive in the information age. Using examples of different modes of information dissemination currently being practised, the paper highlights the balances to be drawn between legal issues of private ownership of data and information and public good interests. It concludes with suggestions for a more coherent regulatory approach.  相似文献   

13.
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an innovative formation-flying radar mission that opens a new era in spaceborne radar remote sensing. The primary objective is the acquisition of a global digital elevation model (DEM) with unprecedented accuracy (12 m horizontal resolution and 2 m relative height accuracy). This goal is achieved by extending the TerraSAR-X synthetic aperture radar (SAR) mission by a second, TerraSAR-X like satellite (TDX) flying in close formation with TerraSAR-X (TSX). Both satellites form together a large single-pass SAR interferometer with the opportunity for flexible baseline selection. This enables the acquisition of highly accurate cross-track interferograms without the inherent accuracy limitations imposed by repeat-pass interferometry due to temporal decorrelation and atmospheric disturbances. Besides the primary goal of the mission, several secondary mission objectives based on along-track interferometry as well as new bistatic and multistatic SAR techniques have been defined, representing an important and innovative asset of the TanDEM-X mission. TanDEM-X is implemented in the framework of a public–private partnership between the German Aerospace Center (DLR) and EADS Astrium GmbH. The TanDEM-X satellite was successfully launched in June 2010 and the mission started its operational data acquisition in December 2010. This paper provides an overview of the TanDEM-X mission and summarizes its actual status and performance. Furthermore, results from several scientific radar experiments are presented that show the great potential of future formation-flying interferometric SAR missions to serve novel remote sensing applications.  相似文献   

14.
Remote sensing in the information age   总被引:1,自引:0,他引:1  
Adigun Ade Abiodun   《Space Policy》1998,14(4):229-238
A large percentage of the public today perceives the majority of applications of Earth observation data from satellite and aircraft altitudes to be focused on the understanding and management of the renewable and non-renewable resources of the Earth and its environment. Originally conceived as a tool for gathering intelligence information, remote sensing has just fully emerged from its military womb to the public domain. Advances in the technology, a variety of indirect benefits that could be derived from space exploration, commercialization of remote sensing and the drive of the value-added companies - all of these hold promise for new opportunities for many other novel applications of Earth observation data and related information. In the advent of the more advanced, user-friendly, cost effective, and problem solving operations being championed by the private sector, particularly in the industrialized countries, it appears that the commercial future for remote sensing programmes and related information generated in the process is promising. This paper examines how the information age is influencing the metamorphosis of remote sensing technology particularly through international legal instruments and converging technologies. In spite of the progress attained to-date, of international concern is possible radio frequency interference between remote sensing satellite and communication satellite services. There is also a major knowledge gap between the providers of raw remote sensing data and the user community, particularly those interested in the new high-level information. A resolution of these issues will enhance the contributions of remote sensing to the information economy.  相似文献   

15.
微波遥感具有全天时全天候的优点,并对云雾、雨雪和植被等有一定的穿透能力。地基微波辐射计以机动灵活的方式接收地表在微波波段的电磁辐射特性,被广泛用于土壤水分、冻融过程等微波遥感定量试验中。以车载多通道双极化微波辐射计(RPG-6CH-DP)为例,针对不同植被覆盖地表,在内蒙古多伦地区开展了为期3个月的野外观测试验,获得了L(1.4GHz)、C(6.925GHz)、X(10.65GHz)三个频率下的极化亮温观测数据。结果发现,L波段对植被的穿透能力最强,对土壤水分变化最敏感。微波辐射计观测地物的方位角、入射角均对观测亮温有直接影响。这为解译地物微波辐射传输过程及其相互作用机理、各种理论模型的发展和验证、地表参数反演算法的改进,以及相关地球观测卫星计划的载荷方案论证奠定了基础。  相似文献   

16.
从星地数传、高时敏任务等对星上遥感影像在轨处理的需求出发,本文对美国、欧洲以及国内主要的星上遥感影像在轨处理进展进行了研究;以此为基础,结合星上遥感影像在轨处理框架与深度学习等智能处理技术,分析了高性能星上智能处理平台构建、基于深度学习的遥感影像在轨智能处理、多源遥感影像数据在轨融合处理、星地协同数据处理及在轨更新等星上遥感影像在轨处理关键技术;最后,对星上遥感影像在轨处理未来发展趋势进行了总结,为进一步提升遥感卫星在轨应用效能提供参考。  相似文献   

17.
Current and planned developments in the field of civilian and commercial satellite imagery promise a major expansion in international accessibility to remote sensing data and technologies. This paper addresses the implications of the expanding global access to land remote sensing data and their derived products. While atmospheric, meteorological, and oceanographic data is also widely available at cost or free of charge, it is land remote sensing - specifically the unique systems with high-resolution and frequent revisit times - that are of primary concern for international and regional security issues. Military and intelligence satellites are not addressed in this discussion of expansion due to their inherently controlled access, unless such systems also provide commercially available imagery or products (as is the case with some Russian systems).  相似文献   

18.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

19.
Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following:1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions.2. Space launches are benign with respect to environmental impacts.3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change.4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space.5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products.At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of the data acquisition step, which is at the very beginning of the information stream leading to decision and action, will enhance coherence in the information stream and strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions in the context of sustainable management of Earth's resources. Taking each assumption in turn, we find the following:(1) Space debris may limit access to Low Earth Orbit over the next decades.(2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products.(3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied.(4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest.(5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies – e.g. NASA, ESA, CNES – it seems prudent to combine resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号