首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
《航天器工程》2016,(2):58-63
针对深空探测通信的需求,提出了一种X/Ka双频共用同轴馈源设计。馈源由X频段圆极化器、X频段十字波导结、Ka频段圆极化喇叭等部件组成。馈源在X频段以同轴波导形式工作,在Ka频段以圆波导形式工作。从X频段波导端口馈入TE10模激励时,在空间形成左旋圆极化波束,从Ka频段波导端口馈入TE10模激励时,在空间形成右旋圆极化波束,从而实现双频双圆极化工作模式。对实际设计的馈源进行了仿真分析,结果表明:该馈源具有较好的阻抗特性和方向图特性,能够满足新一代深空探测双频通信的需求。  相似文献   

2.
文章介绍了同轴波导内场分布的计算公式以及开放式同轴谐振腔的场分布、谐振频率和品质因数的计算公式。通过对同轴波导和开放式同轴谐振腔的比较研究发现,开放式同轴谐振腔实质上就是纵向剖面为缓变截面的同轴波导。  相似文献   

3.
通过理论分析证明,同轴探针对称激励矩形波导时,其模式谱图中不存在引起合成场结构不对称的高次模TE20及TE01模。应用分式线性变换检测法进行了对比测试,验证了理论分析结果的正确性。对聚四氟乙烯样品,在7—16GHz频带内测量其复介电常数均有较高的测量精度。实验表明,在一定条件下,标准三公分波导工作频率可高达16GHz,如果取波导宽窄边比r=3,工作频率可达19GHz。所得结果对于微波材料宽带测量具有实用价值。  相似文献   

4.
设计了一种工作在4GHz~8GHz的基于平衡馈电的宽波束中心脊喇叭馈源。馈源的中心脊为十字形,位于喇叭中心。四个同轴探针旋转对称分布,外导体连接喇叭壁,内导体与十字形中心脊的四个脊片分别连接,通过向正对的同轴探针馈入等幅反相的差分信号实现平衡馈电,抑制高次模的产生。中心脊波导喇叭截止频率较低的前三个模式分别为TE1 1模,TE21 L模和TE21 U模式,其中,TE11模是馈源的主模式。针对馈源的模式分布分析馈源具有宽带特性的原因。在喇叭口面位置加载三个优化设计的轴向波纹槽,获得稳定的宽波束辐射方向图。设计的馈源在频带范围内VSWR1.9,–3dB波束宽度51.5°,E面和H面交叉极化?30dB,相位中心变化0.32?(?为4GHz对应的波长)。  相似文献   

5.
圆波导TE11/TE21双模自跟踪馈源的研究设计   总被引:1,自引:0,他引:1  
圆波导TE11/TE21双模自跟踪馈源作为一种重要的自跟踪馈源,具有低插入损耗、高G/T值和全极化跟踪的优点,在测控领域得到广泛应用。在叙述了设计该馈源的理论、过程和方法的基础上,给出了一个设计实例——S频段的TE11/TE21双模自跟踪馈源,仿真和测试结果基本一致。  相似文献   

6.
《空间电子技术》2009,6(3):54-54
Ku频段混合接头对微波信号进行分路或合成,主要由波导裂缝电桥和波导同轴转换组成。该产品的应用对象为转发器分系统。  相似文献   

7.
低噪声放大器作为射频接收机的核心部件,其性能好坏直接决定了整个接收机性能和系统的信号质量,而低噪声放大器(简称低噪放)波导同轴转换的工艺性质量对其性能有直接影响。文章对一种X频段低噪放波导同轴转换结构的设计工艺性进行了研究,提出了一种整机结构设计以及绝缘子的焊接工艺方法,经试验验证使用该方法能满足设计电性能要求,同时降低了研制成本,增加了批产可靠性。  相似文献   

8.
江涛  阎鲁滨 《航天器工程》2011,20(3):98-102
波纹馈源广泛应用于星载反射面天线系统.文章基于模式匹配法对圆波导阶梯和波纹馈源进行了分析,对波导阶梯的散射参数和波纹馈源的辐射方向图进行了计算,分析波纹馈源时采用光壁波导中的TE和TM模式,并通过分别与Ansoft HFSS仿真结果和试验测试数据比较验证了方法的准确性.采用Ansoft HFSS软件分析某馈源计算时间为...  相似文献   

9.
孙峰 《航天制造技术》2000,(4):29-31,18
介绍了波导转换开关转子的结构特点 ,通过采用精密车削偏心弧形波导腔 ,电火花成形加工柱面等深扼流槽等工艺措施 ,设计制造了相应的工装夹具 ,保证了零、部件的加工要求。  相似文献   

10.
在宽带电子系统轻量化的需求下,基于MEMS矩形微同轴技术设计了10 GHz~50 GHz的超宽带平面对数周期天线。天线采用三节矩形微同轴阻抗变换实现160Ω到50Ω的宽频带阻抗匹配,并通过矩形微同轴转共面波导进行馈电。为展现微同轴的馈电优势,验证设计的微同轴平面对数周期天线性能,制备了50Ω矩形微同轴传输线和天线实物并进行了测试。实测结果表明,在10 GHz~50 GHz频段内,矩形微同轴传输线传输损耗<0.22 dB/cm,两根间隔0.15 mm的矩形微同轴传输线间隔离度>60 dB。天线实测反射系数<-8 dB,增益>4 dBi,增益波动<1.6 dB。  相似文献   

11.
丁杨斌  王新龙  王缜  申功勋 《宇航学报》2006,27(6):1201-1204
静基座大方位失准角的捷联惯导系统误差方程是非线性的,如何对静基座大方位失准角的捷联惯导系统进行初始对准是需要解决的问题。本文提出了基于Unscented转换的Unsented卡尔曼滤波进行捷联惯导系统对准的方法。分别通过扩展卡尔曼滤波和Unsented卡尔曼滤波进行仿真计算,结果验证了Unscented卡尔曼滤波的有效性与优越性。  相似文献   

12.
设计了一种新的姿态四元数匹配传递对准方法,并以载机姿态四元数与弹体姿态四元数的四元数乘积作为量测量,推导了姿态四元数匹配量测方程。通过理论分析,得出了载机平台失准角、弹体平台失准角、弹体安装误差角和机翼颤振变形角为小量的情况下,这些量与量测量之间的关系。推导了传统的姿态角匹配传递对准方法量测方程,与之相比,姿态四元数匹配量测方法明显降低了计算量,并分别对两种姿态匹配方法进行了仿真,仿真结果表明:新的姿态四元数匹配方法与传统姿态匹配传递对准方法具有相同的精度。  相似文献   

13.
文章描述了一种侧壁耦合波导滤波器的设计方法,详细探讨了侧壁耦合结构,并在对侧壁耦合分析的基础上,使用CST软件仿真了一部TE113模侧壁耦合滤波器,实现了四阶椭圆函数特性,仿真结果与实测结果吻合良好。另外,对寄生耦合与简并模式耦合机构之间的关系也进行了深入探讨。  相似文献   

14.
崔潇  秦永元  严恭敏  周琪 《宇航学报》2018,39(10):1127-1133
针对战术级捷联惯导系统(SINS)任意失准角下的快速传递对准,提出一种直接姿态矩阵线性矩阵卡尔曼滤波的传递对准算法。首先,利用姿态矩阵描述姿态,将传统大、小失准角条件下的强非线性、线性滤波对准问题统一转化为一个线性滤波问题;然后,采用矩阵形式卡尔曼滤波对状态进行估计,得到一种线性矩阵滤波对准算法,可以在任意失准角、无初值条件下完成对准;最后,推导姿态矩阵正交约束条件下滤波算法的最优实现。仿真结果表明,算法适用于任意失准角下的传递对准,在摇摆运动下,可以在10 s内完成快速传递对准,水平精度达到0.02°(误差均方根)以内,航向精度达到0.03°(误差均方根)以内。  相似文献   

15.
静电悬浮加速度计的地面重力倾角标定方法   总被引:1,自引:0,他引:1  
薛大同 《宇航学报》2011,32(3):688-696
静电悬浮加速度计是重力场测量卫星上的主要载荷之一,其传感头(飞行件)需要在环境试验前后进行地面重力倾角标定。由于敏感轴之间的耦合机理不同于传统加速度计,所用的模型方程亦有所差别;由于失准角远大于量程范围内的重力倾角,无法采用传统的静态标定法确定模型方程各参数。必须采取技术措施使得三阶非线性系数可以忽略,才能在专用摆台上用动态标定法大致判断标度因数和检验成对加速度计模型方程各参数的一致性,用电模拟法得到二阶非线性系数。对动态标定法,提出了防止频谱泄漏和幅度谱中压低噪声干扰幅度的措施。对电模拟法,用实例给出了具体实施方案和效果。
  相似文献   

16.
王晗瑜  申强  胡宝远  邓子龙  李岩 《宇航学报》2022,43(8):1080-1087
针对弹道修正弹药出炮口后滚转角处于随机状态,捷联惯导系统(SINS)失准角过大时卡尔曼滤波收敛困难的问题,提出在卫星拒止环境下利用神经网络快速估计初始滚转角的改进方法。在炮口处布设少量导航信标,建立反向传播(BP)神经网络拟合初始滚转角与观测量间的非线性映射模型。针对信标辅助下姿态弱可观的问题,引入惯导测量参数作为输入,提高网络估计精度。采用主成分分析法进行特征提取,简化网络结构。仿真结果表明,与基于非线性卡尔曼滤波的对准方法相比,本算法可实现任意滚转角下的快速粗对准;对射角、初始俯仰角误差未在训练范围内以及存在布设误差等场景也进行了测试,与未优化的BP网络相比,对准精度更高,鲁棒性更好。  相似文献   

17.
3-UPS/S并联转台球铰链的优化研究   总被引:2,自引:0,他引:2  
受球铰链最大转角的影响,并联机构的最大倾角通常在30°左右。3-UPS/S并联转台的大倾角要求,需要有大转角空间的球铰链。本文首先建立了转台球铰链的无量纲模型,运用二维空间搜索的方法得到了最优的球铰链法线和球铰链最大转角。然后研究了转台参数对球铰链最大转角的影响,并选择了合适的转台初始角度。针对转台的大运动空间要求,对转台的参数和球铰链的参数进行了优化设计,最后对球铰链的转角和转台的运动空间进行了验证。为物理样机的设计制造提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号