首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
The guidance and control strategy for spacecraft rendezvous and docking are of vital importance, especially for a chaser spacecraft docking with a rotating target spacecraft. Approach guidance for docking maneuver in planar is studied in this paper. Approach maneuver includes two processes: optimal energy approach and the following flying-around approach. Flying-around approach method is presented to maintain a fixed relative distance and attitude for chaser spacecraft docking with target spacecraft. Due to the disadvantage of energy consumption and initial velocity condition, optimal energy guidance is presented and can be used for providing an initial state of flying-around approach process. The analytical expression of optimal energy guidance is obtained based on the Pontryagin minimum principle which can be used in real time. A couple of solar panels on the target spacecraft are considered as obstacles during proximity maneuvers, so secure docking region is discussed. A two-phase optimal guidance method is adopted for collision avoidance with solar panels. Simulation demonstrates that the closed-loop optimal energy guidance satisfies the ending docking constraints, avoids collision with time-varying rotating target, and provides the initial velocity conditions of flying-around approach maneuver. Flying-around approach maneuver can maintain fixed relative position and attitude for docking.  相似文献   

2.
基于预设性能控制的超紧密航天器编队防避撞协同控制   总被引:1,自引:0,他引:1  
研究了考虑具有外界干扰和防避撞约束的近地轨道超紧密航天器构型控制问题,将反步控制技术、预设性能控制相结合,提出了一种基于预设性能鲁棒控制的六自由度编队协同鲁棒控制方法。首先,给出了近地轨道完整的编队航天器相对位置和相对姿态非线性动力学方程,并根据状态约束条件转换了相对位置动力学模型。其次,设计了预设性能函数,通过误差转换,建立系统等效误差模型,基于反步法设计了预设性能鲁棒控制器,进一步应用Lyapunov稳定性定理证明了其闭环系统的一致最终有界性。最后在MATLAB/Simulink平台上进行了仿真验证,结果表明了方法的有效性。  相似文献   

3.
主要研究了火星着陆动力下降段考虑燃料消耗和实际任务约束条件的制导律设计问题。选取可变推力发动机作为执行机构,首先建立了着陆器在动力下降段的运动方程及质量变化方程;其次对实际任务中需要考虑的斜坡、推力幅值和方向等约束条件建立了约束模型;接下来通过构造由控制量和状态量构成的性能指标,提出一种基于模型预测控制的多约束火星精确着陆制导算法。可实现多种约束条件下的指标最优精确着陆任务。最后,通过数值仿真对比了本文与已有典型着陆策略,验证了所提算法可以在满足约束条件的前提下有效地完成既定火星精确着陆任务。  相似文献   

4.
This paper presents a novel methodology to control spacecraft swarms about single asteroids. This approach enables the use of small, autonomous swarm spacecraft in conjunction with a mothership, reducing the need for the Deep Space Network and improving performance in future asteroid missions. The methodology is informed by a semi-analytical model for the spacecraft relative motion that includes relevant gravitational effects without assuming J2-dominance as well as solar radiation pressure. The dynamics model is exploited in an Extended Kalman Filter (EKF) to produce an osculating-to-mean relative orbital element (ROE) conversion that relies on minimum knowledge of the asteroid gravity. The resulting real-time relative mean state estimate is utilized in a new formation-keeping control algorithm. The control problem is cast in mean relative orbital elements to leverage the geometric insight of secular and long-period effects in the definition of control windows for swarm maintenance. Analytical constraints that ensure collision avoidance and enforce swarm geometry are derived and enforced in ROE space. The proposed swarm-keeping algorithms are tested and validated in high-fidelity simulations for a reference asteroid mission.  相似文献   

5.
研究了两航天器协同轨道机动(双主动)完成近距离交会任务的最优控制问题。在考虑航天器姿态变化、对接口位置及路径约束的情况下,构建了完整的6自由度、26状态的双主动最优交会数学模型。利用高斯伪谱法分别将燃料总消耗最少和交会时间最短两种最优问题离散为大型非线性规划问题,而后应用SNOPT软件包进行了求解。在此基础上通过大量数值计算分析总结了不同初始参数对最小燃料消耗和最短交会时间的影响规律,并与主被动交会形式进行了对比。结果表明,当两航天器质量接近时,双主动交会通常可明显减少燃料消耗,或缩短交会时间;而当质量差距较大时,双主动最优交会逐渐退化为主被动最优交会。  相似文献   

6.
针对在轨服务多臂航天器系统高精度的位姿协同要求及其运动过程中的避障约束,提出一种基于机械臂末端(腕关节)和肘关节的双层博弈多臂路径规划方法。研究建立了多臂运动学模型,在博弈论基础上建立多臂的博弈模型;给出了双层博弈的基本算法流程及其纳什均衡解的求解策略;以动目标多臂围捕为场景进行仿真分析,验证所提出算法末端精确跟踪抓取和肘部避障能力的有效性和实用性。所得结果可为多臂在轨服务航天器的智能化路径规划与控制提供新的解决方案。   相似文献   

7.
Based on the analytical solutions of T-H equations and its state transition matrix form,the open-loop control method of spacecraft impulsive relative hovering was studied,which is promising for practical engineering use.The true anomaly intervals of the hovering impulse were optimized by the nonlinear mathematical programming.Based on the calculation of collision probability,the method of safety analysis and risk management was proposed.The numerical simulations show that the introduced relative hovering method can be used for circular and elliptical reference orbits hovering.Furthermore,the local optimal solution can be obtained by applying the true anomaly intervals optimization method.The maximum collision probability and the minimum relative distance nearly appear at the same time.And,the smaller the relative distance is,the larger the collision probability.  相似文献   

8.
针对空间机器人双臂捕获非合作航天器过程中避免关节受冲击破坏的避撞从顺控制问题,在机械臂与关节电机之间设计了一种由旋转型串联弹性执行器(RSEA)构成的弹簧缓冲装置.通过缓冲弹簧变形来吸收捕获碰撞阶段产生的冲击能量,并采用合理的避撞从顺控制策略,保证镇定运动阶段关节受到的冲击力矩限制在安全范围内.应用拉格朗日方法及牛顿elax-elax欧拉法,分别建立捕获前双臂空间机器人开环系统及航天器系统动力学模型;结合冲量定理、闭链系统位置及运动学关系,得到捕获操作后两者所构成闭链混合体系统的动力学模型.为实现失稳混合体系统的镇定,提出了一种基于无源性理论的自抗扰避撞从顺控制方案.此外,运用最小权值范数法对机械臂各关节力矩进行分配,保证了各臂协调操作.通过数值模拟,验证了缓冲装置的抗冲击性能及控制策略的有效性.   相似文献   

9.
In this paper, the collision avoidance maneuver under the chaser’s thruster failure in radial direction is investigated. First, based on the vision measurement, the relative position parameters of the target spacecraft are obtained and the target maneuvre positions are calculated through the isochronous interpolation method. Then, by using coupling effects, the thrusters working time intervals can be computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the thrusters working time intervals. Next, the switching control law under constant thrust is designed for active collision avoidance maneuvres along a specified trajectory.  相似文献   

10.
为保证在轨卫星运行安全,对于碰撞概率较高的空间交会情况需要进行规避机动,防止在轨卫星与空间碎片碰撞.选取连续推力策略进行规避机动,将空间碰撞规避过程转化为满足复杂约束的最优控制问题,采用高斯伪谱法对最优控制律进行求解,求解结果满足相应约束.研究结果为航天器有效规避空间碰撞威胁提供了有力支持.   相似文献   

11.
Deorbit methods have been employed to remove space debris from orbit. One of these methods is to utilize atmospheric drag. In this method, a membrane loaded into the spacecraft is expanded to increase atmospheric drag. Although this method works without requiring fuel, it has the disadvantage of a high risk of collision with other debris owing to its larger area. Area-time product and energy-to-mass ratio have been used as indices to evaluate the risk of collisions between spacecraft and debris. However, the evaluation criteria were uncertain because these two indices are independent. In this paper, we propose a new evaluation index, single-sheet collision factor (SSCF), that comprehensively evaluates the collision risk based on experiments simulating debris collisions. As a result of the hypervelocity collision experiment, we found that the penetration-area mass of the spacecraft affects the severity of debris collisions. In this paper, the product of the exterior-wall thickness, the exterior-wall density, and the space debris cross-sectional area defines the penetration-area mass of the spacecraft. Furthermore, we compare and evaluate various deorbit methods using SSCF. The comparison showed that the penetration-area mass of the SSCF could be quantitatively determined for the debris-collision severity due to difference in structural materials of spacecraft. SSCF will be used to create rules for space-environment conservation with the expansion of the space-development market.  相似文献   

12.
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector’s desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.  相似文献   

13.
为了提升航空发动机非线性模型预测控制(MPC)的实时性,将交替方向乘子法(ADMM)应用于模型预测控制的滚动优化中。基于状态空间模型构造预测方程,通过引入辅助变量和对偶变量,将二次型性能指标和发动机约束改写为适合ADMM算法求解的形式。在航空发动机部件级模型上开展的仿真结果表明,基于ADMM算法的单变量模型预测能够实现对指令信号的高性能跟踪和约束的有效管理。相比于内点法(IPM),ADMM算法在滚动优化过程中,在不同控制指令下,均具有更高的实时性,且在预测时域增加的情况下,计算耗时增加更少,验证了其在模型预测控制中应用的有效性。   相似文献   

14.
主要研究空间非合作目标近距离逼近过程的控制系统设计与仿真问题.针对采用双目视觉敏感器实现对非合作目标的观测情况,提出一种考虑成像误差的目标位置矢量计算方法,有效保证目标位置解算的可行性.在主星视线坐标系下,分别考虑逼近过程的最大相对速度约束、控制推力和力矩约束,设计了基于非线性项解耦的递阶饱和PID形式的近距离逼近位置控制律和姿态控制律,并在逼近过程中设置停泊点以确保与目标无碰撞.最后对典型航天器非合作目标抓捕任务进行了数学仿真,仿真结果表明所提出的方法可在满足各种约束的情况下有效实现任意方向的空间非合作目标的抓捕任务.  相似文献   

15.
航天器编队飞行需要协同控制系统进行统一的协调管理,以实现协同工作。文章将网络同步控制理论应用于航天器编队飞行姿态控制,以提高航天器编队飞行姿态控制的协同性。首先,采用修正的罗德里格斯参数描述航天器姿态动力学;然后,基于网络同步控制算法,设计航天器编队飞行的非线性姿态协同控制律;考虑成员航天器间姿态变化的差异,采用混合控制技术,设计航天器编队飞行混合控制策略。仿真结果验证了控制方法和控制律的有效性,并且相比单一反馈机制,混合控制具有更好的控制品质。  相似文献   

16.
This paper addresses the relative position tracking and attitude synchronization control problem for spacecraft formation flying (SFF). Based on the derived relative coupled six-degree-of-freedom dynamics, a robust adaptive finite-time fast terminal sliding mode controller is proposed to achieve the desired formation in the presence of model uncertainties and external disturbances. It is shown that the designed controller is effective for changing information exchange topology making it robust to node failure. Then, the artificial potential function method is employed to generate collision avoidance schemes to modify the controller such that inter-agent collision avoidance can be ensured during the formation maneuver, which is critical for practical missions. The stability of the overall closed-loop system is proved by using Lyapunov theory. Finally, numerical examples for a given SFF scenario are presented to illustrate the performance of the controller.  相似文献   

17.
空间碎片碰撞预警工作主要针对的是可监测的较大空间碎片, 预测航天器与碎片之间的碰撞风险, 并根据一定的预警判据来评估风险的大小, 进而做出合理的轨道规避决策. 碰撞概率是碰撞风险评估的重要依据. 复合体尺寸、交会距离和误差是影响碰撞概率的三个决定性因素. 当复合体尺寸与交会距离差别不大时, 误差因素对碰撞概率结果起着决定性的作用. 在利用整天误差计算碰撞概率的基础上, 提出了利用精化误差计算碰撞概率的方法, 在危险交会分析中取得了良好的效果.   相似文献   

18.
During recent years, A de-orbit disposal of SinoSat 2 satellite and the depletion of the residual propellant after SC/LV separation for all LM-4 series launch vehicles were carried out. Stuffed Whipple Shields based on hypervelocity impact particles were developed. Routine observation and collision avoidance were performed. The main progress in space debris research will be introduced from three aspects: mitigation, spacecraft protection, observation and collision avoidance.   相似文献   

19.
表层采样技术是获取地外天体土壤样品的重要手段,为在月表复杂地形、不确定着陆姿态、不规则器表包络约束下,快速获取安全的表层采样动态轨迹,文章根据四自由度表层采样装置设计,分析了工作过程中的正逆运动学关系;根据表层采样装置动、静态目标点运动要求,将约束空间分解为有效障碍检测区与不可达集,进行表层采样避障规划;为加快规划速度,针对表层采样装置瞬态构型构建了动态障碍检测区、动态不可达集;结合人工势场法提出了避障规划算法。对典型姿态下表层采样过程的避障规划仿真表明,该算法可实现约束条件下的表层采样轨迹规划,并对表层采样装置适应性设计提供支持。  相似文献   

20.
In this paper, a tube-based robust output feedback model predictive control method (TRMPC) is proposed for controlling chaser spacecraft docking with a tumbling target in near-circular orbit. The controller contains a simple, stable, Luenberger state estimator and a tube-based robust model predictive controller. Several practical challenges are also considered under dock-enabling conditions, such as the control saturation, velocity constraint, approach corridor constraint, and collision avoidance constraint. Meanwhile, uncertainties are carefully analyzed when designing the controller, including dynamics uncertainty, measurement error, and control deviation. The TRMPC ensures that all possible state trajectories with uncertainties lie in the minimum robust positively invariant set (mRPI, i.e., the so-called tube in this paper). The tube center is the solution of a nominal (without uncertainties) system. Another important contribution of this paper is to propose a technique where it is unnecessary to calculate the mRPI explicitly. Thereby, the ‘curse of dimensionality’ can be avoided for a six-dimensional system. To verify the feasibility of the proposed TRMPC strategy in the presence of uncertainties, two scenarios of autonomous rendezvous and docking (AR&D) are simulated. The simulation results show that the TRMPC method is more efficient in minimizing the uncertainties, fuel consumption, and computational cost, compared to the classic model predictive control (MPC) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号