首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
本文结合我公司在研制X发动机第一级整流空心叶片工作中,为防止在型壳的焙烧及合金浇注过程中陶瓷型芯变形、断裂,而采用高温合金芯撑的试验的实践,阐述了采用金属芯撑的目的、作用;金属芯撑的材料、直径、形式的选择;采用金属芯撑的工艺及其质量控制.试验收到了良好的效果,获得了采用高温合金芯撑浇注空心叶片的经验,迈出了我国在熔模精铸空心叶片上应用高温合金芯撑的第一步.  相似文献   

2.
通过试验研究了1Cr18Ni10Ti不锈钢的4种冶炼工艺:真空感应+电渣重熔、真空感应(陶瓷过滤器)、真空感应(陶瓷过滤器)+电渣重熔、真空感应+真空自耗,得到钢锭中夹杂物的种类、大小以及数量的变化.对比试验结果可知,采用真空感应(陶瓷过滤器)冶炼工艺与真空感应+真空自耗之后的钢锭的夹杂物水平相当,D类夹杂物数量最少,大颗粒夹杂物占比也最小.  相似文献   

3.
荣科 《航空学报》1985,6(3):201-207
 本文回顾了自1956年以来,近三十年我国航空发动机铸造涡轮叶片的发展历史和现状,归纳了在此期间材料和铸造科研人员提供的铸造高温合金和铸造方法,满足了航空发动机的需要。 在铸造动叶片、空心叶片的陶瓷型芯、弥散强化合金的研究与运用计算机进行质量控制等方面都取得显著的成就。 着眼为将来发展高性能发动机,文中提出研究陶瓷和难熔金属材料以适应下列要求: 1.更高的工作温度 2.更高的表面稳定性 3.更高的力学性能 除了应不怕失败地发展上述材料外,还应考虑高温合金仍是550~1100℃下工作的发动机结构件材料,而且还要使用一段很长的时间。因此,要研究推广计算机的应用。难熔金属模具及真空压铸叶片工艺的改进,将提高叶片质量和代替传统的熔模铸造工艺。  相似文献   

4.
本文通过对九种不同成分的泡沫陶瓷过滤网的显微组织,岩相构成和形貌以及高低温力学性能进行了观察分析,提出了五种结构模型。分析发现:氧化铝含量约为80%的过滤网烧结和固相反应程度高,主晶相结构理想,高低温性能优越,并经过生产试用,能很好地满足高温合金过滤要求,过滤效果显著。  相似文献   

5.
海军用航空发动机工作环境相当恶劣,其热端部件极易受到腐蚀,在涡轮叶片喷涂陶瓷涂层可以有效解决这一问题。本文通过试验验证的方法,分析了陶瓷涂层的抗高温氧化、抗高温热腐蚀和抗热震性能,以及介绍了陶瓷涂层在航空发动机上的应用及发展前景。  相似文献   

6.
毕中南 《大飞机》2021,(3):12-15
航空发动机是现代工业皇冠上的明珠,可以衡量一个国家的综合技术实力.在燃气涡轮式航空发动机中,高温合金用量通常占到发动机总重量的40%以上,因而高温合金被誉为"现代航空发动机的基石".决定发动机整机性能、可靠性和安全性的关键热端部件,如涡轮盘、叶片、燃烧室等均主要采用高温合金制造.  相似文献   

7.
GE公司准备开展新型镍基高温合金的发动机试验,该合金减少了铼的用量。铼是稀有金属,20年前首次用于涡轮叶片,提高了合金的蠕变强度和叶片的工作温度。随着需求增长,近年铼的价格上涨了10倍。  相似文献   

8.
第三代单晶高温合金   总被引:1,自引:0,他引:1  
最近出现的第三代单晶高温合金CMSSX-10、ReneN6,其蠕变断裂性能比第二代单晶合金高约30℃。其成分的特点是含铼量高(达6%),含铬量低(约3%)但环境性能良好。据报道,第三代单晶合金已用作研制中的推重比为10的航空发动机F119的叶片材料。  相似文献   

9.
Inconel 718合金是一种综合机械性能优良的高温合金,在国内外应用非常广泛。在国内主要用于制造多种先进发动机的涡轮盘、机匣、涡轮叶片等重要零件。由于高温合金塑性大,韧性高,导热性差,给切削加工带来了困难,如在拉削加工Inconel 718合金时,拉刀齿升量的大小就直接影响着合金表面质量,本课题对此进行了试验研究。  相似文献   

10.
某型发动机高压压气机整流叶片,材料为镍基高温合金.服役过程中因叶片榫头两侧与机匣榫槽发生微动磨损,尺寸减小,导致叶片停用.通过采用现代纳米电刷镀方法,对报废叶片进行再制造,使叶片重新满足使用要求.  相似文献   

11.
一、概述涡喷六发动机Ⅱ级涡轮叶片是用GH37高温合金模锻件制成的,材料毛坯经过1180±10℃保温2小时空冷;1050±10℃保温4小时缓冷;800±10℃保温16小时空冷热处理后,获得较好的耐高温综合性能.叶片随涡轮转子在高速旋转中,受到高温燃气流的巨大冲击力和热应力以及转动惯性离心力.如果发动机的转速超过设计值或者发动机连续工作时间过长,惯性离心力以及由它造成的叶片内部的拉伸应力,将破坏叶片的基体强度,最终导致叶片断裂.  相似文献   

12.
先进高温合金近净形熔模精密铸造技术进展   总被引:2,自引:1,他引:2  
介绍近期国内外的高温合金近净形熔模精密铸造技术研究发展状况,重点介绍北京航空材料研究院在航空发动机高温合金涡轮叶片、整体叶盘以及导向器和机匣类结构件的精密铸造技术领域取得的研究成果.论述高温合金精密铸造技术的未来研究重点.  相似文献   

13.
航空发动机的先进涡轮技术(下)   总被引:1,自引:0,他引:1  
涡轮材料与工艺的发展目前,推重比10一级发动机涡轮均采用第三代单晶叶片材料,这种材料本身耐高温能力已达1050-1100℃,加上采用先进隔热涂层提供的隔热效果,其材料能承受的温度将达更高水平。 涡轮材料近期的发展方向是定向共晶合金、超单晶合金、机械合金化高温合金,远期发展方向是人工纤维增强高温合金、定向再结晶氧化物弥散强化合金以及新的能承受高温的材料,如金属间化合物及复合材料,碳-碳复合  相似文献   

14.
Ni3Al基IC6高温合金工程应用研究   总被引:8,自引:0,他引:8  
刘庆瑔 《航空材料学报》2003,23(Z1):209-214
IC6合金是在"863"计划支持下,由北京航空材料研究院研制成功的一种定向凝固Ni3Al基高温合金.选用该合金试制某新型航空发动机整体定向凝固Ⅱ级导向器叶片.由于该叶片尺寸大、形状复杂,给铸造工艺带来很大难度.经过合理设计浇注系统,实现了定向柱晶从叶身向缘板平滑过渡弯晶生长,有效地消除了叶身和缘板转接处的晶界裂纹,使叶片的毛坯合格率由原来的5%攀升到62%,超过了"863"计划规定的50%的指标.在此基础上,对Ⅱ级导向器叶片的铸造工艺稳定性,真空热处理工艺,叶片表面防护涂层工艺,返回料的应用进行了系统的工程应用研究.该叶片已通过技术鉴定,转入批生产,目前已生产65台叶片,在使用中工作正常,没有出现任何材料质量问题.  相似文献   

15.
整体叶盘是航空、航天发动机中的核心部件,具有叶片细长、扭曲角度大、叶片间通道蚀除量大、结构强度弱且多采用高温合金等难加工材料的特点,其中,采用铣削方法加工叶片间通道效率较低,且机械力极易产生变形,不易保证零件加工质量.为实现高效率、高质量、低成本加工整体叶盘和叶片间通道的目标,分析其结构和工艺特点,提出由线切割、电火花...  相似文献   

16.
本文叙述了一种无铪定向凝固高温合金DZ4的成份设计,研究表明:DZ4合金有良好的性能,尤其有优异的可铸性能和比重轻。为了防止出现TCP相,本合金设计过程中已经电子计算机演算。DZ4合金通过发动机试车考核并用于航空发动机涡轮叶片。  相似文献   

17.
先进材料在战斗机发动机上的应用与研究趋势   总被引:2,自引:0,他引:2  
美国、英国等国家特别重视战斗机发动机材料的发展,通过制订和实施一系列先进材料研究计划,开发和验证轻质高强度材料,为发动机研制提供技术保障.综述各国现役、在研和预研战斗机发动机的材料应用情况,总结树脂基复合材料、钛基复合材料、钛铝金属间化合物、单晶高温合金、粉末高温合金、陶瓷基复合材料、陶瓷热障涂层等材料及其工艺应用趋势.先进材料研究的发展趋势:①向低密度高强度发展,以减轻质量;②向高强度与高耐温能力发展,以提高涡轮进口温度;③向一体化(材料、工艺与结构设计)发展,以实现材料特性与结构的最优组合.  相似文献   

18.
增大高温涡轮叶片的冷却面积可改善冷却效果,以大大提高发动机的推力。目前高温涡轮叶片多采用冷却型腔代替冷却型孔。制造陶瓷型芯,模具是关键,因为该模具型腔构型十分复杂,以致采用常规的机械加工方法,甚至常规的数控加工方法都难以完成。我们采有计算机辅助程序设计、数控刨铣的综合工艺,和过一年多的研制,完成了陶瓷型芯模具的试制工作。  相似文献   

19.
航空发动机高温合叶片故障件很难修复,采用先进的激光熔覆技术对高温合金叶片进行深度修理具有重要意义。通过采用合适的激光设备、熔覆粉末,并选取合理的熔覆参数以及热处理工艺等,使熔覆粉末在叶片基体上形成有效的熔覆体,该熔覆体的强度和硬度达到叶片材料性能要求,同时也能保证熔覆体与基体的结合强度,完成高温合金叶片的修复。  相似文献   

20.
<正>2014年4月,法国Snecma和Mecachrome公司就CFM国际公司的LEAP-X发动机钛铝(TiAl)合金低压涡轮转子叶片签订了采购合同,这是TiAl合金在世界范围内首次在单通道客机发动机低压涡轮转子叶片上应用。为制造TiAl合金叶片,2家公司合作开发了1种特殊工艺,并且建造了整套的生产设备。Mecachrome公司新的生产线将耗资6000万欧元,预计该转子叶片将于2015年实现量产,2016年的产量将会大量增加,计划到2019年实现1个/min的叶片生产速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号