首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 670 毫秒
1.
有蒸发稀液雾冷态射流的大涡模拟研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为研究气相湍流场中液滴弥散和蒸发过程的特点和影响因素,加深对气液耦合作用的认知,用欧拉-拉格朗日相结合的办法数值模拟了稀液雾冷态受限射流和自由射流。欧拉坐标系下的气相湍流场使用大涡模拟技术模拟,离散液相则使用拉格朗日颗粒轨道模型进行描述,考虑相间质量、动量、能量交换,采用相平衡蒸发模型模拟液相的蒸发效应。模拟得到的液相速度场、粒径分布和质量流率等均和实验数据较好吻合。有回流的受限射流中初始惯性对Stokes数大的液滴弥散影响较大,而Stokes数在1附近的小液滴弥散更受气相流场结构影响。液雾单位体积蒸发速率和液滴弥散分布密切相关。自由射流中液滴受初始惯性和受气相流场作用大体一致,大小液滴的弥散分布基本满足自相似性。  相似文献   

2.
对燃烧室多旋流器的贫油预混预蒸发(LPP)及形成可燃混合气特性进行了CFD数值研究。2级旋流器的第1级选用斜切入孔式旋流器,第2级选用径向旋流器。第2级旋流器的流量分配对预混预蒸发效果有重要影响。在2级旋流器气体总流量为0.035 kg/s不变时,第1、2级旋流器气体流量比小于1∶4时,预混预蒸发效果较好。计算结果与试验结果相符合。  相似文献   

3.
为了探究微型燃烧室内蒸发管各参数变化对燃油雾化和蒸发效果的影响,对微型燃烧室蒸发管内的燃油流动、雾化、蒸发过程进行了数值模拟,并分析了燃油喷射方向、蒸发管直径及来流空气温度对蒸发管内部燃油雾化特性的影响。结果表明:与其他喷射方向相比,逆向喷射时燃油雾化蒸发效果最佳;随着蒸发管直径的减小,燃油液滴的雾化效果及蒸发率有很大提高;来流空气温度越高,燃油蒸发率越高。  相似文献   

4.
蒸发管蒸发及雾化特性   总被引:2,自引:1,他引:1  
为了研究某型发动机中的Γ型蒸发管的蒸发性能,在进口空气为常压条件下进行实验研究.实验采用燃气加热,模拟实际蒸发管工作环境.实验研究气油比、进口空气温度以及蒸发管管壁温度的变化对蒸发管燃油蒸发率及出口索太尔平均直径SMD(Sauter mean diameter)的影响.实验结果表明:气油比(AFR)、蒸发管空气进口温度及蒸发管壁温对蒸发率及SMD都有着很大的影响,气油比的增大和空气进口温度的增大以及蒸发管壁温的提高都会导致燃油蒸发率的增大和出口SMD直径的减小,而三者中壁温的作用最为显著.   相似文献   

5.
章宇轩  何小民  金义  周毅 《推进技术》2019,40(7):1594-1605
为了研究一种部分预蒸发预混合气动多点供油装置的雾化性能,使用燃油收集器和相位多普勒粒子分析仪(PDA),获得了多点供油装置下游的燃油流量分布和索太尔平均直径分布,并使用数值模拟方式获得了供油装置内外流场形态和油气动量比变化趋势,分析了流量与粒径分布的形成原因。结果表明,多点供油装置下游燃油主要集中在分布管后半段,在该位置对应的下游喷雾场内可以保持相对均匀的燃油流量分布;油雾场中雾化较好的区域可近似为一个向外侧倾斜的矩形,雾化索太尔平均直径在20μm左右。多点供油装置内部流线的变化导致分布管上各小孔流量不均,进而使分布管下游油气动量比产生变化,是形成其下游的燃油流量分布和索太尔平均直径分布趋势的最直接原因。  相似文献   

6.
为研究微型燃烧室蒸发管的雾化蒸发性能,试验研究了进气温度、气油比(AFR)、管壁温度和进口空气流速对燃油蒸发率的影响。试验结果表明:进气温度和进口空气流速是影响蒸发效率的两个主要因素;当气油比减小到3.0时,管内两相流型由膜态沸腾向过渡态沸腾转变,该状态下燃油与管壁的换热效率最低。蒸发管数值仿真引入离散相模型(DPM)和液滴碰壁飞溅模型,蒸发效率计算结果与试验数据呈现相同趋势。在此基础上研究了气动参数对燃油雾化的影响。计算结果表明,进口空气流速的提高可以改善燃油雾化细度,但不利于液滴分布的均匀性,索太尔平均直径(SMD)与进口空气流速的-1.69次方成正比。   相似文献   

7.
为研究微小型发动机中的Г型蒸发管的蒸发性能,在进口空气为常压条件下,对微小尺寸Г型蒸发管的蒸发性能进行了试验研究.研究了气油比、进口空气温度以及蒸发管内空气流速的变化对蒸发管燃油蒸发率的影响.试验结果表明,气油比和蒸发管空气进口温度是蒸发率的主要影响因素,蒸发管内空气速度影响并不显著,气油比的增大和空气进口温度的增大都会导致燃油蒸发率的增大.  相似文献   

8.
微小“T”型蒸发管蒸发率实验   总被引:1,自引:0,他引:1  
研究了微小尺寸"T"型蒸发管燃油蒸发率在不同工况下的变化规律.实验中蒸发管入口空气常压.实验研究了气油比、蒸发管入口空气温度、蒸发管壁温度和蒸发管入口空气流速对蒸发率的影响.试验结果表明, 气油比、蒸发管入口空气温度和蒸发管壁温是影响蒸发率的主要因素.蒸发管入口空气流速对蒸发率的影响较小.该蒸发管在管壁和进口空气同时加温, 并且气油比大于4.5的条件下, 蒸发率接近100%, 蒸发效果好.   相似文献   

9.
飞机燃油箱地面预洗涤技术理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于氧氮质量守恒关系,建立了飞机燃油箱爬升过程中气相空间、燃油中平衡氧浓度及地面预洗涤的数学模型,并采用微元段法对其进行了求解。计算结果显示,当采用富氮气体进行地面预洗涤后时达到的平衡浓度越低,则可达到的安全巡航高度越高。由于爬升过程中逸出的氧气很多会排出燃油箱外,因而地面预洗涤时,并不需要将燃油中氧质量浓度降低至安全气相浓度所对应极限质量浓度,且飞机燃油箱中的初始载油率对洗涤后的氧质量浓度有直接要求,当载油率越高,需要将燃油中的氧质量浓度洗涤的越低。计算还显示,在地面洗涤时,油罐中的油量也对换气次数有直接影响。通过选择合适浓度的富氮气体在地面预洗涤燃油箱,可保证飞机在巡航高度下氧浓度在安全范围内,但是会在一定程度上增加设备的初投资费用。文章的研究结果可为燃油地面预洗涤的工程设计奠定初步的理论基础  相似文献   

10.
采用光学诊断与三维数值模拟结合的方式,研究了中心分级贫油预混预蒸发模型燃烧室燃烧组织与NOx生成特征。试验测量了模型燃烧室流速、燃油、OH和NO组分浓度分布。通过与试验结果对比,采用基于雷诺平均Navier-Stokes方程的方法对流场的预测误差为13.9%,喷雾张角预测误差为6.0%,预测的OH和NO组分分布特征与试验测量结果基本一致。数值结果表明,在单头部模型燃烧室中,主、预燃级火焰以弱耦合的方式组织燃烧,且大部分NO在预燃级高温区域生成。燃油分级比的变化(0.15~0.30)不影响燃烧室流动与火焰分布特征,但对燃烧室出口NOx生成量有一定影响,NOx生成量随着分级比增大而减少。  相似文献   

11.
新型蒸发燃油喷射装置的雾化和蒸发性能   总被引:1,自引:1,他引:1       下载免费PDF全文
为了研究满足燃烧室雾化要求的雾化方式,设计了采用侧喷和逆喷供油方式的两种蒸发管,并对其分别进行了雾化和蒸发率两方面的实验。实验测试了蒸发管在出口不同轴向距离的雾化效果以及不同外界温度下蒸发管的蒸发性能,分析了影响蒸发管雾化和蒸发的影响因素。实验结果表明,新型侧喷、逆喷蒸发管均能较好的完成燃油雾化要求。  相似文献   

12.
飞机燃油箱冷却惰化系统地面性能分析   总被引:1,自引:0,他引:1  
设计了冷却惰化系统的工作流程并建立了地面状态下冷却惰化的数学模型,通过Modelica软件求解得到了油箱气相空间燃油蒸汽体积分数,燃油和气相空间温度以及制冷量随时间变化关系,并且研究了几个关键参数对惰化效果的影响。结果表明:随着抽气流量的增加和蒸发温度的降低,气相空间燃油蒸汽体积分数越低,气相空间温度也越低,达到冷却惰化的时间也越短,惰化效果也越好。虽然内热源对冷却惰化的效果起到了阻碍的作用,内热源越大,冷却惰化越难实现。但整体上看,冷却惰化是油箱惰化的一种可行替代方法。   相似文献   

13.
飞机燃油箱地面冷却惰化数值仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
通过 COMSOL软件对飞机燃油箱地面冷却惰化进行了 3D仿真,得到了燃油温度、气相空间温度、燃油蒸汽体积分数随时间变化的情况;研究了抽气流量、蒸发温度、内热源功率、外界空气流速对冷却惰化的影响。结果表明:内热源功率过大时,燃油蒸汽体积分数高于可燃体积分数下限,将不能惰化;增大抽气流量以及降低蒸发温度,可以更快地降低气相空间温度,惰化效果更好;外界空气流速越大,气动加热热量越大,油箱气相空间温度越高,但外界空气流速较大时,系统仍能惰化。  相似文献   

14.
顾善建  王俭  杨茂林  黄勇 《航空动力学报》1993,8(2):133-137,202
研究了气流速度、温度和喷嘴压降、稳定器位置对稳定器截面燃油浓度分布的影响 ,考虑了稳定器对流场的影响 ,应用轨道扩散法计算了模拟外涵温度下稳定器截面燃油浓度的分布。  相似文献   

15.
The study includes the experimental investigation of the evaporation performance of T-type vaporizer,mainly studied the relationship of the inlet air temperature and vaporizer wall temperature with the evaporation ratio.Then,it studied the LBO(lean blow out) and combustion efficiency of the micro aero-engine combustor with T-type vaporizer on the normal pressure test rig.The inlet air condition is environmental pressure and temperature.The gas analysis method is used to study the combustion efficiency,and the inlet air temperature is 300 K,400 K and 500 K.It could be concluded that the evaporation performance is improved with the increasing of the inlet air temperature and vaporizer wall temperature;the average LBO is 0.003;the combustion efficiency rises with the inlet air temperature,and it remain constant when the fuel/air ratio changed in the range from 0.008 to 0.02.The vaporization ratio is the key factor to determine the combustion performance.   相似文献   

16.
高温富油燃气超燃试验研究   总被引:13,自引:8,他引:5       下载免费PDF全文
在空气流量1.2 kg/s 左右的地面连管试验台上, 进行了模拟飞行Ma= 4, 5, 6的三个气流总温状态的碳氢燃料(煤油) 超燃试验。试验用双燃烧室方案, 由突扩型亚燃燃烧室燃烧产生的高温可燃气以马赫数1.25喷入超燃室, 超燃室空气流马赫数为2.15 (或2.13)。不同空气流总温状态下燃料当量比对亚燃燃烧室和超燃燃烧室的试验结果表明, 双燃烧室方案实施煤油的超声速燃烧是可行的。若进一步采取混合增强和合理控制油量分配等措施, 则可提高双燃燃烧室超燃效率。  相似文献   

17.
二冲程重油直喷发动机混合气形成研究   总被引:1,自引:0,他引:1  
针对航空煤油蒸发困难、二冲程发动机油耗高的问题,建立了二冲程重油直喷发动机的三维仿真模型,并通过试验验证了模型的准确性。在此基础上研究了发动机的换气及混合气形成过程。研究结果表明:推迟喷油在减少燃油短路时间的同时,避开了排气流量较大的自由排气阶段,可以提升燃油捕获率;提前喷油,利用废气的高温可以加快煤油的蒸发进程,并且喷油过晚会导致煤油蒸发不完全、油气混合不均。所研究发动机在下止点前80°曲轴转角开始喷油可以保证燃油蒸发和均匀混合的同时提升燃油的捕获率。此时发动机具有较高的指示功率和较低的燃油消耗率,分别为84.0 kW和360.3 g/kWh。该研究结果可以为二冲程重油直喷发动机的喷油参数优化提供理论支撑。   相似文献   

18.
提出了飞机惰化系统富氮气体(nitrogen-enriched air,简称NEA)分配系统的主要设计要求,并以A320和波音737飞机为代表,分析了窄体机的NEA分配系统。进一步分析了波音787和A350飞机的惰化系统NEA分配方案,发现其采用限流孔、气体喷嘴、排气笛形管、引射器等相结合的方案来实现NEA在燃油箱内的快速均匀分配,然而这两种方案并不能根据各燃油箱气相空间的实时变化而及时、主动地调节气流量的大小。提出利用燃油液面进行自动流量调节的NEA分配方案,通过在油箱内布置垂直向下的排气管路,并在管路分支上不断增加排气孔来实现排气量随着燃油箱气相空间实时正向变化的目的,达到按照每个隔舱气相空间的变化,调节排气量和排气位置的效果。对比A350和波音787飞机的NEA分配方案的主要特点在于能够主动根据燃油箱内液面变化,及时调节NEA流量,以达到更好的快速、均匀分配的效果,值得进行深入的理论和试验研究。  相似文献   

19.
燃气轮机双燃料燃烧室流场对比数值研究   总被引:2,自引:1,他引:1  
针对燃气轮机环管型双燃料燃烧室分别燃用庚烷和裂解气燃料的情况,采用CFD(computa-tional fluid dynamics)技术对其燃烧流场进行对比研究.数值模拟采用了RNGk-ε湍流模型、化学平衡条件下的快速化学反应系统和简单概率密度函数(PDF)燃烧模型、液体燃料的喷雾模型以及SIMPLE算法.模拟对比分析了两种燃料燃烧下的温度分布、燃烧效率、流量分配、壁面冷却效果、空气过量系数等参数,以及它们随工况变化的趋势.所得结论如下:①不同燃料燃烧时,流场内的流量分配基本保持一致;②裂解气燃料燃烧时,其燃烧效率高出燃油状态约1%,但出口温度均匀性较差;③在加入相同化学焓值的燃料进入燃烧室时,裂解气燃料的头部空气过量系数α较大,所得到的出口平均温度低于燃油状态约20~40 K.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号