首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Many physical processes precede and accompany the solar energetic particles (SEP) occurrence on the Earth’s orbit. Explosive energy release on the Sun gives rise to a flare and a coronal mass ejection (CME). X-ray and gamma emissions are believed to be connected with flares. Radio emission is signature of disturbances traveling through the corona and interplanetary space. Particles can gain energy both in the flare and the accompanying wave processes. The beginning of the SEP events has the advantage of being the phase most close to the time of acceleration. Influence of interplanetary transport is minimal in the case of first arriving relativistic solar protons recorded by ground based neutron monitors in so called ground-level enhancements (GLE). The early phase of the SEP events attracts attention of many scientists searching for the understanding of particle acceleration. However, they come to the opposite conclusions. While some authors find arguments for coronal mass ejections as a sole accelerator of SEPs, others prove a flare to be the SEP origin. Here, the circumstances of SEP generation for several GLEs of the 23rd solar cycle are considered. Timing of X-ray, CME, and radio emissions shows a great variety from event to event. However, the time of particle ejection from the Sun is closer to maximum of X-ray emission than to any other phenomena considered. No correlation is found between the particle fluxes and the CME characteristics.  相似文献   

2.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

3.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

4.
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm.  相似文献   

5.
The Yohkoh soft X-ray telescope obtains several images every 90 minutes. Data from the declining phase of the solar cycle have been used to compare the X-ray signal with other indicators of activity and to study coronal heating. X-ray emission from a north polar coronal hole is found broadly consistent with results of previous EUV observations. In diffuse emission regions, temperature rises to around 2.2 MK and levels off in the height range 1.5 – 1.9 RO. Such emission underlies streamers and may be the source of the low-speed solar wind. X-ray signatures for Coronal Mass Ejection (CME) events which involve the detection of reduced X-ray intensities in the corona, have been developed with Yohkoh data. CME observations are described  相似文献   

6.
There is increasing evidence suggesting that coronal acceleration supplies at least part of the particles observed during solar energetic particle events, yet coronal processes tend to be mostly disregarded in these studies. This is often due to the fact that the coronal restructuring in the early development of the associated flare and/or coronal mass ejection event is extremely fast (on the order of a few minutes) and can encompass most of the solar disk, thus requiring a full disk solar imager with very high time-cadence, and wide spectral coverage. An important subset of the energetic particle events are the near-relativistic impulsive electron events detected near Earth: their onsets can be traced back to a release time in the low corona with accuracies on the order of a couple of minutes. We investigate a series of impulsive electron events from 1998 to 2001 using energetic electron data measured in situ by the Electron, Proton, and Alpha Monitor (EPAM) experiment on the Advanced Composition Explorer (ACE) spacecraft, and radio coronal observations from the Nanqay Radioheliograph, the Decametric Array from Nanqay and the WAVES experiment on the WIND spacecraft. EPAM measures electrons in the energy range from 40 to 300 keV over a wide range of look directions and with better than 1 minute time resolution, while the Nançay radioheliograph provides images of the solar corona at 5 different frequencies with time cadence of 8 images per second and per frequency. This study focuses on the events which correspond to a delay, between the inferred injection times of the electrons at the Sun, and the electromagnetic emissions from flares, of at least 5 minutes. Radio signatures are found near the estimated time of the electron release for each of the events. The timing and spectral characteristics of the radio emissions, when compared with the properties of the particles seen at EPAM, strongly support an acceleration process in the corona but at highly variable heights from one event to the other.  相似文献   

7.
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs.  相似文献   

8.
A popular scenario for electron acceleration in solar flares is transit-time damping of low-frequency MHD waves excited by reconnection and its outflows. The scenario requires several processes in sequence to yield energetic electrons of the observed large number. Until now there was very little evidence for this scenario, as it is even not clear where the flare energy is released. RHESSI measurements of bremsstrahlung by non-thermal flare electrons yield energy estimates as well as the position where the energy is deposited. Thus quantitative measurements can be put into the frame of the global magnetic field configuration as seen in coronal EUV line observations. We present RHESSI observations combined with TRACE data that suggest primary energy inputs mostly into electron acceleration and to a minor fraction into coronal heating and primary motion. The more sensitive and lower energy X-ray observations by RHESSI have found also small events (C class) at the time of the acceleration of electron beams exciting meter wave Type III bursts. However, not all RHESSI flares involve Type III radio emissions. The association of other decimeter radio emissions, such as narrowband spikes and pulsations, with X-rays is summarized in view of electron acceleration.  相似文献   

9.
10.
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME.  相似文献   

11.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   

12.
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations.   相似文献   

13.
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections.  相似文献   

14.
Two successive solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs) on 2001 April 14 and 15 are compared. The weak SEP event of April 14 associated with an 830 km/s CME and an M1.0 flare was the largest impulsive event of cycle 23. The April 15 event, the largest ground level event of cycle 23, was three orders of magnitude more intense than the April 14th event and was associated with a faster CME (1200 km/s) and an X14.4 flare. We compiled and compared all the activities (flares, CMEs, interplanetary conditions and radio bursts) associated with the two SEP events to understand the intensity difference between them. Different coronal and interplanetary environments of the two events (presence of preceding CME and seed particles ahead of the April 15 event) may explain the intensity difference.  相似文献   

15.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   

16.
China’s Space Astronomy and Solar Physics in 2011-2012   总被引:1,自引:1,他引:0  
In the first part of this paper, we describe briefly the mid and long-term plan of Chinese space astronomy, its preliminary study program, the current status of satellite missions undertaken, and the current status of astronomy experiments in China’s manned space flight program. In the second part, the recent research progress made in the fields of solar physics is summarized briefly, including solar vector magnetic field, solar flares, CME and filaments, solar radio and nonthermal processes, EUV waves, MHD waves and coronal waves, solar model and helioseismology, solar wind and behavior of solar cycle.   相似文献   

17.
The solar wind wave heating models require substantial amount of wave power in order to efficiently heat and accelerate solar wind. The level of fluctuations is however limited by energetic particle observations. The simplest cyclotron sweep models result in convection-dominated transport, contradicting observations. However, models incorporating wave-wave -interactions, which cause wave energy to cascade in wavenumber, allow more reasonable energetic particle transport in the interplanetary space. The mean free path of the energetic particles remains still relatively short in the corona, providing favorable conditions for coronal mass ejection (CME) related shock acceleration. We study the consequences of this scenario on the energetic particle production related to CMEs. The role of self-generated waves is also discussed.  相似文献   

18.
We studied a set of 74 CMEs, with shedding the light on the halo-CMEs (HCMEs), that are associated with decametric – hectometric (DH) type-II radio bursts (1–16?MHz) and solar flares during the period 2008–2014. The events were classified into 3 groups (disk, intermediate, and limb events) based on their longitudinal distribution.We found that the events are mostly distributed around 15.32° and 15.97° at the northern and southern solar hemispheres, respectively. We found that there is a clear dependence between the longitude and the CME’s width, speed, acceleration, mass, and kinetic energy. For the CMEs’ widths, most of the events were HCMEs (~62%), while the partial HCMEs comprised ~35% and the rest of events were CMEs with widths less than 120°. For the CMEs’ speeds, masses, and kinetic energies, the mean values showed a direct proportionality with the longitude, in which the limb events had the highest speeds, the largest masses, and the highest kinetic energies. The mean peak flux of the solar flares for different longitudes was comparable, but the disk flares were more energetic. The intermediate flares were considered as gradual flares since they tended to last longer, while the limb flares were considered as impulsive flares since they tended to last shorter.A weak correlation (R?=?0.32) between the kinetic energy of the CMEs and the duration of the associated flares has been noticed, while there was a good correlation (R?=?0.76) between the kinetic energy of the CMEs and the peak flux of the associated flares. We found a fair correlation (R?=?0.58) between the kinetic energy of the CMEs and the duration of the associated DH type-II radio bursts.  相似文献   

19.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

20.
We investigate on the relationship between flares and coronal mass ejections (CMEs) in which a flare started before and after the CME events which differ in their physical properties, indicating potentially different initiation mechanisms. The physical properties of two types flare-correlated CME remain an interesting and important question in space weather. We study the relationship between flares and CMEs using a different approach requiring both temporal and spatial constraints during the period from December 1, 2008 to April 30, 2017 in which the CMEs data were acquired by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) over the solar cycle 24. The soft X-ray flare flux data, such as flare class, location, onset time and integrated flux, are collected from Geostationary Environmental satellite (GOES) and XRT Flare catalogs. We selected 307 CMEs-flares pairs applying simultaneously temporal and spatial constraints in all events for the distinguish between two associated CME-flare types. We study the correlated properties of coincident flares and CMEs during this period, specifically separating the sample into two types: flares that precede a CME and flares that follow a CME. We found an opposite correlation relationship between the acceleration and velocity of CMEs in the After- and Before-CMEs events. We found a log-log relation between the width and mass of CMEs in the two associated types. The CMEs and flares properties show that there were significant differences in all physical parameters such as (mass, angular width, kinetic energy, speed and acceleration) between two flare-associated CME types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号