首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
对Rao喷管型面(一种最大推力喷管型面)计算方法进行改造,使之在附加了最大推力鸡束条件(给定喷管出口直径)的情况下确定最大推力喷管型面,用这个方法给出了与某个已知喷管型面有相同的结构约束条件的喷管型面,本方法不同于其它方法的根本特点是:能为喉部具有平直段的喷管计算最大推力型面,对给定喷管出口半径时的设计条件很适用。  相似文献   

2.
超音速分离线喷管作为一种新型可动喷管,在机械结构、流场分布、推力性能等方面具有不同于传统可动喷管的特点。由于具有偏转放大效应特点,在执行矢量控制时超音速分离线喷管性能较明显优于传统喷管。为了讨论其推力效率受不同因素影响的变化规律及作用机理,对不同摆角下超音速分离线喷管受不同因素影响的内流场开展数值仿真研究。结果表明:在给定的设计参数下,分离线间隙尺寸的增大对推力效率具有减益性,超音速分离线喷管在执行矢量控制时具有较高的推力效率;同时,相较于锥形扩张段,钟形扩张段喷管有着更好的推力效率。  相似文献   

3.
本文介绍一种用直接最佳法来设计最大推力喷管型面的方法。用一个二次多项式来模仿具有固定初始膨胀表面的喷管型面。多项式的系数随确定最大推力喷管型面的直接最佳法而改变。考虑三种直接最佳法:多维线坐标研究、最速下降法和牛顿法。提出结果,以便图解说明三种直接法的特点,证明二项式型面产生的推力基本上与用变分法确定的喷管型面所产生的推力是相同的。  相似文献   

4.
环簇式塞式喷管在固体火箭发动机上应用探讨   总被引:1,自引:0,他引:1  
对可应用于固体火箭发动机上的3种塞式喷管的结构特点进行了比较,重点讨论环簇式塞式喷管结构性能。基于目前的设计方法,确定了环簇式塞式喷管与钟形喷管的性能比较方法,进行了尺寸及重量分析,并给出了其在战略导弹第一级发动机和高空发动机的应用算例。结果表明,内喷管喉径是影响环簇式塞式喷管尺寸大小的最主要设计参数;在单元数足够多时,环簇式塞式喷管可比相同面积比的钟形喷管的尺寸更小,重量更轻,推力效率更高;明确了环簇式塞式喷管实际应用所需解决的关键问题。  相似文献   

5.
针对不同喉部结构进行了最大推力喷管型面设计计算,分析了不同曲率半径对喷管流量系数、几何效率、推力系数、扩张损失和分离点位置的影响。结果表明:流量系数随上游曲率半径的增大而增大,推力系数和几何效率随下游曲率半径的增大而减小;下游曲率半径的增大导致扩张损失在小范围内不断减小,分离点位置后移。  相似文献   

6.
微喷管设计加工方法不同于常规尺寸喷管,具有小尺寸、大面积-体积比的特点,内部流动雷诺数低,粘性力影响显著。为研究结构参数设计对蒸发液体微推力器喷管性能的影响,利用三维数值模拟方法研究不同扩张半角、面积比以及刻蚀深度对微喷管推力、比冲的影响。结果显示,增加微喷管扩张半角有利于降低粘性损失,最优扩张半角为30°,其数值大于常规尺寸喷管。增加面积比可以提高气体膨胀程度,但与之同时增加的壁面面积会增加粘性损失,推力、比冲先随面积比增加而增加,面积比为14时达到峰值,随后下降。增加刻蚀深度有利于减小扩张段壁面面积,提高微喷管性能。  相似文献   

7.
针对组合循环发动机双流道轴对称环形喷管提出了一种可调方案,开展了特定工况下喷管三维流场数值仿真,与固定喷管、无扩张段喷管进行了对比。结果表明,通过环形喷管特定型面外壁沿轴向前后移动,可实现喷管喉部面积、面积膨胀比的连续调节,有效提高喷管推力性能;在Ma2~5典型工况下,可调喷管推力系数均大于0. 93,最高约0. 974;固定喷管在非设计点无法匹配发动机需求,可调喷管由于可调节喷管喉部面积,其流量可做到与发动机上游流量准确匹配。采用固定喷管,其流量相对可调喷管最大偏差可达50. 6%;环形可调喷管推力系数总体高于固定喷管和无扩张段喷管。相同工况下,可调喷管较固定喷管推力系数提高最高约31%,较无扩张段喷管推力系数提高最高约14. 6%。  相似文献   

8.
受外廓尺寸限制的火箭发动机喷管设计以及能产生最大推力的喷管造型等问题,在过去的几十年里已引起了不少研究者的注意。最近发现,在喷管的出口流场的控制面上引入“不连续性”,可以减少喷管长度。本报告给出了喷管型面的计算和推力性能比较。这里提及的控制面包括两区域,内区包含超音速膨胀流,其速度和流动方向角是随半径增大而增大的。外区包含受喷管型面影响的流场,它呈现出随半径增大而流动方向角交小的特征。在内外区的接合处,引入流动方向上的不连续性和相应的速度等熵变化,通过等熵压缩波在此接合面处相交实现“跳跃”。在控制面的上游,流动保持等熵。在本报告中所示的计算方法表明,喷管长度的减少量,是与跳跃的大小和沿控制面的位置相关联的。可以想象,只需少量的推力性能损失就可实现喷管长度的大幅度减少。这种设计观点最有希望应用在空间发动机的设计中。  相似文献   

9.
一引言固体火箭发动机的喷管通过控制排气的膨胀使燃烧室产生的燃气能量有效地转换为动能,因而给飞行器提供推力。飞行器约65~75%的推力是将燃烧室产物在喷管喉部加速到声速所产生的,其余的推力是通过喷管扩散段产生的。通常喷管设计的目的是控制其膨胀程度使整个飞行器的航程和有效载荷在一定的外形、重量和成本的限度内达到最大。因此,喷管是飞行器的组成部分,不能独立于该系统使喷管最佳化。由于这种相互  相似文献   

10.
为了获得偏置斜切喷管主要结构参数对发动机推力特性的影响规律,采用内弹道计算方法,通过对比不同喷管结构参数下发动机的推力特性,研究了喷管斜切角度和喷管扩张半角对发动机推力及推力偏斜角的影响规律。结果表明,随着发动机斜切角度的增大,发动机轴向推力略有增大,仅增大1%,发动机径向推力和推力偏斜角减小明显,分别减小28%和100%,且几乎呈线性关系;随着喷管扩张半角的增大,发动机轴向推力明显增大,增幅为14.8%,推力偏斜角显著减小,降幅为29.1%,而发动机径向推力略有增大,但仅增大1.2%。此外,喷管斜切部分产生的发动机轴向推力可能为负推力,即在斜切部分产生的轴向推力小于零,在发动机设计过程中应该重点关注,以期实现喷管结构的优化设计。  相似文献   

11.
运用美国联合陆海空军和国家航空航天局(JANNAF)提出的二维动力学模型修改版,我们进行了火箭喷管参数计算。本文对火箭发动机中能量释放效率作了定义,并将喷管上能量损失分为发散、摩擦和动力学损失。喷管特性设计参数与这些损失的关系也进行了研究。另外,也考虑到了喷管中激波和热损失对喷管效率的影响。喷管能量损失的确定运用了 SSME 和 Vulcan 发动机的喷管型面,后一发动机是未来运载火箭的组成部分。火箭的设计参数由推力、室压、混合比、喷管面积比和喷管几何形状确定。所有这些参数都有系统的变化,本文阐述了它们对喷管效率的影响。这些效率做为数据库用于未来运载火箭进一步的系统分析。  相似文献   

12.
本文介绍了从70年代发展起来的固体火箭发动机新颖的推力向量控制方案——液浮喷管,液浮喷管最大的特点是操纵力矩小,本文较全面地讨论了液浮喷管的优缺点、基本结构、设计计算,以及有关特性等。  相似文献   

13.
大型固体发动机潜入式喷管背壁区域熔渣沉积数值模拟   总被引:2,自引:0,他引:2  
考虑凝相颗粒间的相互作用以及颗粒和发动机壁面之间的碰撞,建立了固体发动机潜入式喷管背壁区域熔渣沉积数值计算模型,并针对某大型固体发动机内熔渣形成过程开展了数值计算。结果表明,该计算模型具有较高的计算精度,计算结果可信;熔渣的沉积主要是由颗粒之间相互作用而形成的大尺寸颗粒与喷管潜入段内壁面碰撞并发生黏附而形成的;喷管潜入段入口处药柱燃面的形状对潜入段内熔渣的沉积过程具有一定影响。  相似文献   

14.
某固体发动机推力终止装置结构空间十分有限,为保证推力终止时发动机负推力大于等于零的要求,必须尽可能地提高反推力效率。因此对推力终止装置进行了一系列优化设计,尤其是反向喷管连续锥形型面设计,在总结一般固体发动机研制经验的基础上,将非连续柱面型面改为连续锥形型面。通过理论分析和试验结果表明,该反向喷管的结构可靠性和反向推力效率较高。此项设计技术对带反向喷管的固体火箭发动机设计具有参考作用。  相似文献   

15.
本文计算和分析了火箭发动机喷管内的流场和参数。通过流场和参数的分析,清楚地说明了最大推力喷管优于锥形和圆弧形喷管。本文还叙述了合理选取喷管参数,如喉部上、下游曲率半径,喷管长度比和绝热指数的一般原则。  相似文献   

16.
为了解决采用偏置斜切喷管固体火箭发动机推力计算的难题,采用微元分割的方法,建立了适用于此类发动机的推力计算方法,可对发动机的推力及推力偏斜角进行计算。结果表明,针对实验发动机,该计算方法的压强和推力计算精度在±5%以内,可作为此类发动机推力预示的依据。揭示了此类发动机推力偏斜角产生的原因,由于喷管斜切部分对发动机的轴向推力和径向推力产生了不同影响,引起发动机的推力偏离喷管扩张段轴线方向,形成了推力偏斜角。针对此类发动机,喷管斜切部分产生的发动机轴向推力可能是负推力,在此类发动机设计过程中,应该科学地选择喷管偏置角和喷管斜切角,从而降低由于喷管偏置斜切而带来的发动机损失。  相似文献   

17.
为满足高性能导弹推进系统需求,提高固体火箭发动机推力矢量调节性能,综合塞式喷管高度补偿和结构功能一体化的特点,设计了一套环喉型固体塞式喷管。该喷管由小喷管膨胀段和中心塞锥组成,通过移动小喷管膨胀唇部的位置,改变喉部面积大小,实现推力可调,采用数值模拟方法预估了其推力性能。对塞式喷管进行了地面冷流试验,测定了其推力性能。结果表明:环喉型塞式喷管推力性能的数值模拟结果与试验结果相吻合。当塞式喷管喉部面积满足0.7倍变化时,可实现塞式喷管推力4∶1的调节变化,同时具有明显的高度补偿效应。未来可进一步优化内喷管设计,使其广泛适用于全空领域导弹动力系统,提高发动机性能。  相似文献   

18.
塞式喷管多参数性能优化计算   总被引:9,自引:1,他引:9  
从影响塞式喷管推力性能的因素中总结出内喷管倾角,内膨胀比、总膨胀比,燃气总压和飞行高度这五个主要因素,并以推力最大为目标函数运用枚举和逐层优化的方法对上述五个参数的取值进行优化计算,提出了对这五个参数进行优化取值的方法并得到了相关结论,其结论可为实际的塞式喷管发动机设计研制提供部分的理论依据。指导相关设计参数的确定。  相似文献   

19.
针对可应用于固体火箭发动机的3种环状塞式喷管构型,采用有限体积法进行计算,通过流场结构分析和性能比较,表明单元间隙较小的多单元环簇型塞式喷管在整个飞行高度下均具有较高的推力效率,适合作为固体火箭发动机用塞式喷管的基本构型.在此基础上,采用颗粒轨道模型模拟了20单元环簇型塞式喷管的两相流场,由于颗粒的存在使得两相流场较纯...  相似文献   

20.
喷管形状结构对固体推进剂火箭发动机效率和性能会产生影响,这篇文章对这种影响提供了理论分析判断方法。这个理论方法利用比冲(Isp)确定发生在发动机中的流动和热损失。在分析中考虑了由于扩散、摩擦、热、粒子滞后,烧蚀和化学不平衡引起的损失。本文用抛物线、园弧和特征流线方法(MOC)构成喷管形状,对发动机性能进行比较。这些形状的差别是用最佳初始膨胀角和最佳折回角(初始角与出口角之差)来表示,在喷管形状参数(长度和直径)同定的情况下,研究了典型的低空和高空的发动机。这些计算的结果对喷管形状设计给出了有益的理解。研究指出: 第一:最佳初始膨胀角和最佳折回角随型面类型而变化。第二:对于抛物线型、园弧型和特征流线型的喷管,固定形状参数可以得到的最大比冲基本上是相同的。第三:如果喷管不是最佳形状,就出现明显的性能损失。第四:这个理论比冲预测方法能有效地运用到固体推进剂火箭发动机喷管形状设计中去。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号