首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of dam-age, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.  相似文献   

2.
To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory of diffraction are used to deal with the instantaneous electromagnetic scattering of the target. The RCS of the aircraft in the helicopter mode, fixed-wing mode and transition mode is analyzed. The results show that in the fixed-wing mode, the blade has a weaker deflection effect o...  相似文献   

3.
基于几何特征的飞行器RCS高效计算方法(英文)   总被引:2,自引:1,他引:1  
Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.  相似文献   

4.
For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective.  相似文献   

5.
DOA estimation for attitude determination on communication satellites   总被引:1,自引:1,他引:0  
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.  相似文献   

6.
Research of low boom and low drag supersonic aircraft design   总被引:2,自引:1,他引:1  
Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden(SGD) inverse design method and multi-objective genetic algorithm.Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment(CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics(CFD) analysis.  相似文献   

7.
The Doubly Salient Electromagnetic Generator(DSEG) is a promising candidate in aircraft generator application due to the simplicity, robustness and reliability. However, the field windings and the armature windings are strongly coupled, which makes the inductance characteristics non-linear and too complex to model. The complex model with low precision also leads to difficulties in modeling and analysis of the entire aircraft Electrical Power System(EPS). A behavior level modeling method based on modified inductance Support Vector Machine(SVM) is proposed. The Finite Element Analysis(FEA) inductance data are modified based on the experiment results to improve the precision. A functional level modeling method based on input–output characteristics SVM is also proposed. The two modeling methods are applied to a 9 kW DSEG prototype. The steady state and transient process precision of the proposed methods are proved by comparing with the experiment results. Meanwhile, the modeling time consumption, the application time consumption and the calculation resource demand are compared. The DSEG behavior and functional modeling methods provide precious results with high efficiency, which accelerates theoretical analysis and expands the application foreground of the DSEG in the aircraft EPS.  相似文献   

8.
Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.  相似文献   

9.
Radio frequency interference(RFI) is becoming more and more frequently, which makes it an important issue in SAR imaging.RFI presented in synthetic aperture radar either on purpose or inadvertent will distort the useful SAR echoes, thus degrade the SAR image quality.To resolve this issue, a long time study was carried out to study the characteristic of the RFI through the RFIaffected spaceborne and airborne SAR data.Based on the narrow band nature of RFI, this paper proposes a new process which contains both RFI detection and RFI suppression.A useful subband spectral kurtosis detector is first used to detect RFI, and then its results are used for RFI suppression.The proposed process has two advantages: one is the economization on the compute time for unnecessary interference suppression when no RFI existed; the other is improving the performance of the suppression method with knowing the exact position where RFI is.Moreover, the previous RFI suppression method––subband spectral cancelation(SSC) is supplemented and perfected.The subband division step is also elaborated detail in this paper.The experiment results show that the subband spectral kurtosis detector exhibits good performance in recognizing both weak and narrow-band RFI.In addition, the validity of the SSC method with subband spectral kurtosis detector is also validated on the real SAR echoes.  相似文献   

10.
Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.  相似文献   

11.
典型布局飞机电磁散射特性数值计算研究   总被引:2,自引:1,他引:1       下载免费PDF全文
电磁隐身对飞行器战场生存力具有重要影响,作战任务不同,对应的飞行器布局形式也不同,而飞行器布局形式会影响其电磁散射特性。建立四种典型布局形式和电磁模型,基于物理光学法,数值模拟不同布局飞行器的RCS曲线,并分析RCS分布特点;对常规和特殊布局模型,研究其电磁散射的频率响应特性。结果表明:飞机布局决定RCS分布形式,在前向角域内,布局A-1、A-2、B、C、D的电磁隐身性能呈震荡提高趋势,RCS均值从7.770 0dBsm震荡降低至-30.067 3dBsm,布局B的RCS均值为-10.434 7dBsm;而不同布局的后向和周向角域电磁隐身性能依次提高,后向RCS均值由常规布局的22.702 5dBsm缩减为-25.093 8dBsm,周向由7.039 1dBsm缩减为-15.137 3dBsm;在高频区域,频率增加对RCS曲线分布特点影响较小,但曲线震荡性更加明显,RCS算术均值降低。  相似文献   

12.
高超  巢增明  袁晓峰  白杨 《航空学报》2016,37(3):749-760
雷达散射截面(RCS)测试是隐身技术和目标特性研究的基础。无论是研究物体的电磁散射特性还是研制具有突防能力的隐身武器系统,RCS测试都具有非常重要的意义。通过RCS测试可以验证电磁散射计算的理论和方法,更重要的是,对部分飞行器目标进行电磁散射理论计算非常困难,而通过测试可以直观地获得目标的电磁散射特性数据,从而避开复杂的电磁仿真计算。与外场、紧缩场RCS测试方法相比,近年来得到广泛应用与发展的RCS近场测试方法在飞行器目标的散射特性测试方面具有效率高、成本低的优势。介绍了飞行器RCS测试评估方法,综述了国内外RCS近场测试技术研究的最新进展与工程应用实例,分析展望了飞行器RCS近场测试技术面临的机遇与挑战。  相似文献   

13.
超声速隐身歼轰机概念设计数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
为了提高军用飞机的空战和对面攻击能力,对歼轰机进行总体设计。采用CATIA软件,设计出隐身歼轰机的三维数字样机和武器挂载方案;基于物理光学法和等效电磁流法,采用自编的RCSAnsys软件,数值模拟歼轰机的数字样机在X、S和UHF波段下的RCS特性和强度分布特性;基于湍流模型的k-ε方程和控制理论的N-S方程,采用Fluent软件,数值模拟歼轰机的数字样机所在空气流场的压强和速度分布云图,得出整机的升阻特性。概念设计数值模拟结果表明:内置弹舱的歼轰机前向±30°的RCS均值≤-4.728 dBsm,超声速飞行时歼轰机的升阻比约等于5.6337。  相似文献   

14.
座舱和进气道对飞行器隐身性能有重要作用。为分析座舱及进气道的散射影响特性,建立了四种包含不同部件的电磁模型,结合物理光学法和雷达截面积(RCS)均值相对增值概念,研究了RCS曲线分布影响、俯仰角响应特性、频率响应特性。结果表明:考虑隐身设计的座舱和进气道不改变散射分布特性,RCS曲线分布特性相似;俯仰角增加,座舱影响较小,进气道、混合座舱和进气道前向、后向、周向角域相对增值震荡性递增,频率增加,座舱对电磁散射影响不大,进气道、混合座舱和进气道的前向、后向角域的相对增值震荡减小。座舱对电磁散射影响较小,前向相对增值位于-2.4~1 dB之间,进气道对电磁散射影响较大,前向相对增值为2~12 dB。  相似文献   

15.
Taking into account the limitations of existing stealth performance analysis methods, a method termed as the integrated stealth performance analysis method is proposed for evaluating the stealth ability of the penetration aircraft. Based on various target radar cross section (RCS) scattering characters, this article integrates the relevant parameters needed for building up target circumferential RCS scattering model and proposes the RCS scattering controlling parameters to control the changing trends of the relevant model RCS scattering characters. According to the radar dynamic detecting characters during the whole penetration course, a dynamic stealth performance evaluating model is proposed accompanied by a series of stealth ability estimation rules. This new analysis method can enhance the integrality and dependability of the stealth analysis conclusions and summarize the relationship between the target RCS scattering characters and their effects on stealth performance. The rules indicated by this relationship can be used as the reference for designing new type of stealth aircraft and setting up specific penetration tactics.  相似文献   

16.
针对目前隐身飞行器外形雷达散射截面(RCS)难以准确计算的问题,提出了一种基于目标外形几何特征和矩量法的飞行器RCS算法.通过对矩量法阻抗矩阵元的理论分析,研究了物面感应电流随散射体表面曲率的变化规律,指出感应电流之间的耦合已成为影响隐身飞行器物面电流分布的重要因素,并且指出根据飞行器物面曲率分布可以预知强的感应电流耦合区域,利用这些强的电流耦合能够组成稀疏化的阻抗矩阵,从而实现飞行器RCS的快速求解.以金属双弧柱和典型隐身飞机外形为例,分析验证了物面曲率几何信息对计算结果精度的影响以及在提高计算效率方面的作用.数值结果表明该方法保持了与传统矩量法基本一致的计算精度,但计算时间仅为矩量法的7.2%.  相似文献   

17.
隐身技术是提高巡航导弹突防能力的重要技术手段,为分析外形隐身对巡航导弹电磁散射特性影响,建立了隐身、常规巡航导弹电磁模型,基于物理光学法和RCS减缩值,研究了外形隐身RCS曲线分布影响、频率响应特性、俯仰角响应特性。结果表明,外形隐身可大幅降低前后向散射特性,改变RCS散射波峰位置,使前后向曲线向内收敛;频率增加,前向均值和减缩值分别在-32 dBsm、25 dB左右振荡变化,其他角域RCS均值降低而减缩值增加;俯仰角变化较小时不影响散射特性,各角域RCS均值和减缩值呈振荡趋势,前向减缩值约为35 dB左右,后向俯仰角0度时最大。  相似文献   

18.
陈思远  张晓玲  师君  张海 《航空学报》2015,36(4):1240-1249
 自旋式飞行器由于运动轨迹复杂,不仅不能精确测量飞行高度,而且从未被用做SAR成像平台。通过研究自旋式飞行器的三维SAR成像新模型,将测高与三维SAR成像相结合,提出了一种基于三维SAR成像的测高新模型。首先分析了自旋式飞行器天线相位中心运动轨迹的特点,将具有三维空间分布的半螺旋线天线运动轨迹等效为面阵天线;然后基于等效面阵,利用模糊函数理论,推导了相应的三维成像模型,从理论上证明了模型的成像可行性并分析其成像性能;最后在成像模型基础上,提出基于三维SAR成像的自旋式飞行器测高新模型,并从成像角度分析影响测高精度的因素。针对等效面阵非均匀分布的特点,采用后向投影(BP)算法仿真验证自旋式飞行器模型下三维成像的可行性和测高模型的有效性。  相似文献   

19.
缝隙目标电磁散射特性试验   总被引:3,自引:0,他引:3  
高旭  刘战合  武哲 《航空学报》2008,29(6):1497-1501
 通过对目标结构进行合理设计,可以在一定角域内显著减小雷达散射截面(RCS)。对飞行器表面常见锯齿缝隙的散射特性进行了研究。在微波暗室内对锯齿缝隙分别沿俯仰角变化、方位角变化的减缩效果进行测试。俯仰角变化时,锯齿缝隙有较好的减缩作用,以114°锯齿缝隙在试验中减缩效果最好。方位角变化时,对114°锯齿缝隙进行了多频段测试,并与相应直缝隙进行了对比研究,结果表明,通过选取合适的方位角角域,锯齿缝隙的减缩作用会随入射波频率的升高和仰角的增大而显著增强。结论可为高性能隐身飞行器外形隐身设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号