首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用纳秒脉冲光纤激光器在3种不同扫描速度(900、720、540 mm/s)工艺条件下,对2A12航空铝合金表面丙烯酸聚氨酯复合漆层进行了激光清洗实验,研究了不同激光扫描速度对清洗效果的影响。实验表明,当900 mm/s时,面漆全部去除,底漆部分去除;当720 mm/s时,底漆余量进一步减少,氧化膜显露;当540 mm/s时,漆层基本除净,但部分氧化膜破坏,基材外露。研究发现,清洗过程形成了“烧蚀-等离子体冲击-烧蚀”除漆机制交互作用的特点,烧蚀会引起漆层中功能性氧化物粒子和面漆着色剂脱漆沉积,凹坑为主要清洗特征;等离子体冲击主要发生在凹坑间隔区间,其产生的爆轰波主要对漆层产生破坏或去除作用;烧蚀和等离子体冲击一方面会触发瞬态加热膨胀除漆机制,使残余漆层发生应力碎裂或剥离;另一方面将使残余漆层受到热影响,导致部分自由基发生位置重排和置换。  相似文献   

2.
针对激光选区熔化成型316L不锈钢工艺参数选择问题,采用单因素条件变量分析法,在激光选区熔化过程中,分析了激光功率、扫描速度对316L不锈钢成型零件表面粗糙度、致密度、硬度和尺寸偏差的影响规律。结果表明:当激光功率降低或者扫描速度提高时,内部能量密度减小,粉末熔化量减少,试样表面球化效应增强,孔隙缺陷增多,试样致密度减小、硬度降低;当激光功率提高或者扫描速度降低时,内部能量密度增大,粉末被过度烧蚀,产生较大的尺寸偏差,所形成熔道易塌陷,导致层间结合较差,试样性能降低。当激光功率为300 W、扫描速度为1000 mm/s时,能量密度适中,形成了较好的冶金结合,抗拉强度可达753 MPa,上表面硬度HRB能达到97.22。该项研究为316L不锈钢激光选区熔化工艺参数的合理选择提供了参考。  相似文献   

3.
激光除漆作为一种环保、高效的新型除漆技术是激光清洗技术的一个重要分支,而飞机在使用过程中需要定期对原有漆层进行去除。分别对飞机金属蒙皮和复合材料部件表面的激光除漆工业应用进展进行了介绍,详细分析了飞机金属蒙皮以及复合材料部件表面激光除漆的作用机理,展望了激光除漆技术在国内航空制造业的发展方向。  相似文献   

4.
镍基高温合金GH4169磨削参数对表面完整性影响   总被引:4,自引:2,他引:2  
研究了用单晶刚玉砂轮磨削镍基高温合金GH4169时,磨削参数对表面完整性中的表面特征(表面粗糙度、表面形貌、表面显微硬度和表面残余应力)的影响,以期优化磨削参数.砂轮速度依次选择15,20,25m/s,磨削深度分别选择50,100,150μm,工件速度分别选择5,10,15m/min.研究结果表明:表面粗糙度对工件速度的变化最敏感,表面显微硬度对砂轮速度变化最敏感,表面残余应力对砂轮速度变化最敏感;同时表明了磨削参数对磨削表面形貌、显微硬度梯度、微观组织、残余应力梯度的影响,揭示了表面完整性中的变质层形成规律.其塑性变形层在5~10μm,显微硬度变化影响层为80~100μm,残余应力影响层厚度为80~200μm,其为磨削镍基高温合金表面完整性控制研究提供相关的实验数据基础.   相似文献   

5.
为了提高单晶硅激光辅助车削加工表面质量,通过开展激光辅助和常规车削加工试验,结合表面粗糙度、表面形貌及拉曼光谱检测,研究激光辅助车削技术对加工质量的影响。基于正交试验方法,研究单晶硅激光辅助车削工艺参数对表面粗糙度的影响;通过方差分析和极差分析评估各因素对表面粗糙度的影响。研究结果表明:与常规车削相比,激光辅助车削可有效提高加工表面质量,降低材料表面的残余应力。主轴转速、进给速度、切削深度和脉冲占空比对表面粗糙度的贡献率分别为17.51%、44.48%、6.69%和14.70%。确定最佳加工参数组合如下:主轴速度为4 000 r/min,进给速度为2 mm/min,切削深度为5μm,脉冲占空比为30%,最终获得表面粗糙度Rq为2.4 nm的高质量表面。  相似文献   

6.
以7075铝合金试样的搅拌摩擦焊接头为对象,利用激光喷丸和常规喷丸工艺对其进行后续处理,通过试验对比分析了激光喷丸工艺对表面粗糙度、显微硬度、接头残余应力、裂纹扩展、疲劳寿命的影响。结果表明,经激光喷丸处理的搅拌摩擦焊接头的表面粗糙度远小于常规喷丸处理的接头表面,而对接头显微硬度的影响差异不大。激光喷丸可改变接头的残余应力分布,是增强搅拌摩擦焊接头抗疲劳性的有效方法,对其他焊接接头及构件的激光喷丸处理具有一定的参考价值。  相似文献   

7.
为提高炮管管线阴阳线硬度及抗摩擦磨损能力,对炮管管线阴线和阳线进行激光淬火试验研究。建立连续半导体激光加热38CrNi3MoV温度场的有限元预测模型,仿真分析激光参数对炮管管线温度场的影响规律。结合温度场仿真结果,对炮管管线开展激光淬火试验研究,探究激光功率、激光光斑直径、扫描速度等工艺参数对淬硬层硬度以及深度的影响规律。结果表明:激光淬火后平均硬度由400HV提高到710HV,增加43.66%;阳线、阴线硬化层深度分别达到1.22mm和0.61mm。淬火后阳线表面粗糙度Ra由0.548μm增加至0.700μm,阴线表面粗糙度Ra由4.424μm降低至3.804μm,均在允许的变化范围之内,满足使用要求。通过光学显微镜对淬火后阴阳线组织转变进行观察分析,探究激光淬火后组织转变规律。  相似文献   

8.
顾冬冬  张晗  刘刚  杨碧琦 《航空学报》2021,42(10):524868-524868
微桁架夹芯板点阵轻量化结构在航空航天领域有重要应用,选区激光熔化(SLM)增材制造技术可克服传统工艺局限性,高质量一体化成形复杂点阵结构。以稀土Sc改性高强Al-Mg合金为对象,采用SLM工艺对其进行工艺优化试验,并基于优化结果对微桁架夹芯板开展一体化成形工艺调控研究。研究结果表明:SLM成形Al-Mg-Sc-Zr合金表面质量、冶金缺陷等随激光参数发生显著变化,在激光功率400 W、扫描速度800 mm/s的条件下获得较高表面质量(粗糙度为13.2 μm)及致密度(相对密度为99.5%)。当扫描速度较低时试件熔池底部形成一次Al3Sc析出相,而当扫描速度过高时因凝固速度过快析出相减少,导致试件显微硬度降低。在优化工艺区间内,随激光扫描速度增加SLM成形Al-Mg-Sc-Zr微桁架夹芯板粘粉比例下降,构件质量随之减轻;水平方向构件尺寸精度、桁架微杆成形精度均随扫描速度增加而增加。  相似文献   

9.
采用正交试验法对7075-T651铝合金进行二维超声挤压加工试验,运用灰色关联分析法研究工艺参数对表面粗糙度和显微硬度的综合影响,采用多元线性回归方法构建灰色关联度预测模型,并基于预测模型通过规划求解确定最优工艺参数。结果表明:各工艺参数对表面粗糙度、显微硬度和灰色关联度的影响规律不同,基于灰色关联度排序获得的工艺参数值也并非最优值;建立的灰色关联度模型可对试验进行准确预测,基于该模型进行非线性规划求解获得的最优工艺参数为静压力220 N,挤压速度30 m/min,进给量0.14 mm/r,此时表面粗糙度Ra值约为0.44μm,显微硬度约为637 HL。  相似文献   

10.
介绍了激光精细表面制造中的两类关键技术——激光清洗和激光抛光,以及其在提高结构材料表面质量和性能表现中的研究和应用。采用激光清洗技术去除铝合金表面氧化层,清洗表面氧含量显著降低,从而明显提高铝合金焊缝质量,避免熔合区气孔形成;通过激光抛光技术对增材成形钛合金构件进行抛光,可将表面粗糙度由5μm以上降低到1μm以下,同时激光抛光钛合金表面发生相变,使表面硬度和耐磨性得到显著提高。最后,进一步讨论激光清洗和抛光复合技术处理Ni-Ti形状记忆合金(SMA)表面的可行性。  相似文献   

11.
为了在碳钢表面获得耐磨、耐蚀、抗热疲劳等综合性能优良的TiC颗粒强化Ni基合金复合涂层 ,利用3kW连续波快速轴流CO2 激光器进行了一系列的激光表面熔覆实验研究 ,光斑直径 3 5mm ,扫描速度 3 10mm/s,送粉速率 3 2 6 g/min。实验结果表明 :利用送粉式激光表面熔覆技术 ,可以在碳钢表面直接原位合成TiC颗粒增强的Ni基合金复合涂层 ,涂层与基体呈良好的冶金结合 ,涂层宏观质量完好 ,无裂纹 ,但有少量的气孔。涂层组织由γ 奥氏体枝晶、CrB、TiB2 、M2 3 C6和TiC组成。经激光表面重熔后 ,涂层显微硬度达HV0 2 110 0 ,是基材显微硬度的 4 5倍  相似文献   

12.
为了在考虑表面粗糙度条件下,对表面织构影响润滑性能的理论计算结果进行试验验证,提出了一种通过纳秒紫外激光在锡青铜样片表面构造不同粗糙度参数的方法。通过改变激光加工参数制备了不同表面粗糙形貌,并采用白光干涉共聚焦显微镜以及粗糙度仪对表面粗糙形貌进行表征。试验结果表明,表面粗糙度随激光扫描速度的增大而减小;扫描间距等于光斑直径50μm、扫描速度300mm/s时,表面粗糙纹理方向清晰,便于粗糙度方向参数的控制。通过控制粗糙度方向参数以及微织构方向控制,实现了与表面粗糙方向成规定角度的微织构阵列的制备。  相似文献   

13.
激光表面清除处理及应用   总被引:2,自引:0,他引:2  
叙述了激光清除处理技术的特点及系统装置,较具体地介绍了国外采用激光除去漆层、锈蚀层、绝缘材料和基片表面外来微粒的研究情况以及作者所进行的光学元件超光滑表面的激光辅助清洗试验研究。  相似文献   

14.
激光除漆技术作为一种新型的、环保的除漆方法已被广泛的研究和应用。本文通过对激光除漆技术工艺进行了详细介绍,分析了其在飞机复合材料零部件表面除漆应用的发展趋势,通过对国外相关应用实例情况进行阐述,展望了我国飞机复合材料部件表面激光除漆技术研究和应用。  相似文献   

15.
崔静  张杭  翟巍  路梦柯  杨广峰 《航空学报》2021,42(6):424032-424032
飞机发动机进气道前缘唇口积冰将会严重威胁航空安全,仿生研究表明具有微纳结构的疏水表面可以起到良好的抑冰效果。针对飞机唇口材料TC4,采用飞秒脉冲激光诱导制备TC4微结构表面,利用三维形貌仪和扫描电镜对TC4合金表面三维形貌和微纳结构进行观测,应用接触角测量仪分析表面浸润改性,依托结冰特性实验系统测试微结构表面抑冰抑霜性能,并分析飞秒脉冲激光加工工艺参数对表面微观结构和抑霜特性的影响机制。研究结果表明:随着激光扫描速度的增大,TC4合金表面形成的拱形沟壑深度增加,沟壑上方出现干涉条纹以及圆形凸起且微纳凸起的尺寸随扫描速度的增大而增大,接触角先减小后增大再减小;加工后表面液滴冻结时间比未加工表面延迟30 s;扫描速度2 000 mm/s时的液滴冻结时间最长,霜层质量最小,高度最低。飞秒激光加工TC4合金表面形成的微纳结构以及表面吸附的有机物能够改变表面接触角;粗糙度和表面形貌能够影响表面结冰时间和结霜量。  相似文献   

16.
复合材料的性能特点使其表面漆层除漆困难。本文介绍了一种吹树脂颗粒法(PMB)除漆技术,论述了其工作原理和工艺流程。选用T700和EW240复合材料作为样件,通过检测除漆前后的外观形貌、分层脱粘、层间剪切强度、弯曲强度等性能,分析该除漆技术对复合材料性能的影响。结果表明,采用PMB技术进行复合材料除漆,未对复合材料性能产生不利影响,除漆效果达到预定要求。  相似文献   

17.
针对镍基单晶高温合金叶片服役时受高温腐蚀工作环境影响极易疲劳断裂问题,研究了不同激光冲击次数下激光冲击强化对单晶合金抗热腐蚀性能的影响。利用显微硬度仪测量激光冲击前后合金纵截面的显微硬度;借助扫描电子显微镜(SEM)和能谱仪(EDS)观察和分析腐蚀层表面及纵截面的微观组织,并结合X射线衍射仪(XRD)确定腐蚀层表面相结构。实验结果表明:经激光冲击强化后,合金表面显微硬度和截面硬度影响层深度均随激光冲击次数的增加而增大;在短时热腐蚀实验中,当激光冲击次数增加到1次、2次、3次后,合金腐蚀最大单位面积增重量分别从未冲击合金的2.87 mg·cm-2降低到2.17、1.81、1.10 mg·cm-2,腐蚀层深度分别从91μm降低到65、41、27μm,且表面腐蚀坑的尺寸、深度和数量明显下降,保护性氧化膜致密性得到提高。所得结果表明激光冲击强化能有效提高900℃/75%Na2SO4-25%NaCl盐膜条件下单晶合金的抗热腐蚀性能。  相似文献   

18.
定量化揭示激光淬火过程多场耦合瞬时演变规律,进而实现40Cr激光淬火工艺参数显著性分析。基于相图计算法(CALPHAD)计算温变物性参数,建立40Cr齿轮钢激光淬火数值模型,对瞬态温度、相变以及应力分布进行数值计算,揭示相变行为与塑性应力之间的耦合作用机理。通过Axio Vert.A1显微镜、扫描电子显微镜(SEM)、超景深3D显微镜和显微硬度仪进行分析。基于正交试验,分析了激光半径、激光功率、扫描速度对淬火质量的显著性影响。结果表明:影响最高温度和相变深度的显著工艺参数依次为光斑直径、扫描速度、激光功率;残余应力成“驼峰”分布,影响残余拉应力的显著工艺参数依次为光斑直径、激光功率、扫描速度。该研究为有效控制淬火残余应力,优化工艺参数提供重要理论依据。  相似文献   

19.
为研究选择性激光熔化(selective laser melting,SLM)成形工艺参数对镍基高温合金IN718致密度、微观组织和显微硬度的影响,借助FORWEDO LM180型SLM成形机采用不同工艺参数制备了分析试样,通过维氏硬度测试,光学和扫描电镜观测以及X射线检测方法对试样进行了测试分析。结果表明:随激光能量密度提高(激光功率起主导作用),成形试样孔隙缺陷减少,致密度显著提高;在较大激光能量密度下,合金试样微观组织生长趋于均匀,晶粒更加细小;提高激光扫描速率,造成激光辐射和冷却时间变短,合金微观组织生长方向变化显著;SLM工艺复杂的传热特点影响试样组织形貌的复杂程度;合金试样的显微硬度随着组织细化和致密化而提高。  相似文献   

20.
对某型发动机进气机匣联动环跑道裂纹故障进行机理分析,认为联动环跑道处的机加接痕明显,发动机工作过程中风扇一级转子叶片激起机匣振动,机匣本身强度不足,导致在故障部位萌生裂纹并扩展。采用激光熔覆+氩弧焊复合方式利用导热法原理进行修复,自制铜夹具进行导热,可以减少机件的形变量;通过改变坡口形式、减少金属熔覆填充量,改变激光熔覆的工艺参数,控制热输入量、单位能量密度,可以使形变量进一步减少,满足了产品尺寸和形位要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号