首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

2.
Stems of 21-day dwarf Marigold plants cultivated on the clinostat were compared with plants cultivated on vertical axis rotators ("vibrational controls") and stationary controls for long-term changes in cell wall composition. Stems of 21-day plants grown under stationary conditions and subsequently exposed to the clinostat for 24 hours were also analyzed. Among the long-tern markers, calciun, lignin, and protein-bound hemicellulose (possibly cell wall glycoprotein) clearly differentiated the effects of vibration from those of the clinostat. Short-term differential responses included rate of ethylene production, nastic movement and peroxidase activity of the cell wall, but not of the protoplast.  相似文献   

3.
A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.  相似文献   

4.
Since its launch in 1978 the International Ultraviolet Explorer (IUE) satellite observatory has been used to record ultraviolet spectra of nearly two dozen comets. These observations have been applied principally to studies of the composition, chemistry and evolution of the gaseous coma and more recently, with the substantially increased data base, to comparative analyses. The observations of Comets Bowell (1982 I) and Cernis (1983?) at a heliocentric distance of ≈ 3.4 AU show these two comets to be virtually identical and pose problems for water ice vaporization models. The most significant recent result from IUE was the discovery of S2 in the Earth-approaching comet IRAS-Araki-Alcock (1983d) and the use of the S2 emission as a monitor of short-term variations in cometary activity. In early 1984, periodic comet Encke was observed for the second time by IUE, this time post-perihelion.  相似文献   

5.
A hand-held radiometer was used to gather spectral radiance data simulating bands 3, 4 and 5 of the Landsat-D Thematic Mapper. Variations in biomass of the salt marsh plant Spartina alterniflora were highly correlated to changes in spectral radiance expressed as the vegetation index or the infrared index. Negative stresses like increased soil salinity and increased concentrations of copper or zinc yielded reductions in biomass which were detected spectrally. Positive stresses like freshwater and sewage effluent additions produced an increase in biomass which also were detected using spectral data. The demonstrated detection of biomass from spectral data was expanded spatially and temporally to estimate net primary productivity of a salt marsh. Remote sensing estimates of production ranged from 5 to 20% of estimates from harvest data. Future applications of this biomass estimation technique, employing data gathered from satellite platforms and from the ground, are discussed for salt marsh systems.  相似文献   

6.
Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion (Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 μmol mol−1 and 3 light intensity levels of 150, 300, 450 μmol m−2 s−1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO2, but remained unchanged with increases in light intensity. Elevated CO2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO2 for antioxidant production.  相似文献   

7.
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce (Lactuca sativa L. cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa pO2pO2) or 101 kPa total pressure (20.9 kPa pO2pO2) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.  相似文献   

8.
The role of calcium ions in cytological effects of hypogravity   总被引:1,自引:0,他引:1  
Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funariahygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.  相似文献   

9.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   

10.
The visible and near infrared channels, Ch1 and CH2 respectively, on the Advanced Very High Resolution Radiometer (AVHRR) provide daily information for monitoring changes in vegetation and crops. Data from these channels are used to create a normalized vegetation index (NVI) that is sensitive to changes in green leaf biomass and is represented mathematically by:
NVI = CH2 ? CH1CH2 + CH1
Operational products generated at NOAA include full-scale 1-km resolution images of the NVI covering areas viewed in a single swath of the polar-orbiting NOAA satellite. Global scale NVI images are also produced by compositing over a seven-day period, saving the maximum NVI created daily for each local array (resolution of 15 km at the equator to 30 km at the poles). Such seven-day mapping reduces the effect of cloud contamination. The global vegetation indices are used by foreign and U.S. government agencies for operational and experimental purposes such as assessment of crop conditions, monitoring potential desert locust breeding grounds, forest fire danger models, and monitoring range lands for forage availability. Examples include changes in the NVI in the Lake Chad vicinity, 1981–1982 and 1984; western United States NVI; and seasonal variations of the NVI in the Sahel using the global operational data base, 1982–1983.  相似文献   

11.
Experiments on insects, higher plants and lower fungi were carried out aboard the biological satellite Cosmos-1129, in Earth orbit, from 25 September to 14 October 1979. The main objective of these experiments was to gain more profound knowledge of the effect of weightlessness on living organisms and to study the mechanisms by which these various organisms with different life cycles can adjust and develop in weightlessness. Experiments on insects (Drosophila melanogaster) were made with a view towards understanding gravitational preference in flies, the life cycle of which took place on board the biosatellite under conditions of artificial gravity. Experiments on higher plants (Zea mays, Arabidopsis taliana, Lycopersicum esculentum) and lower fungi (Physarum polycephalum) were performed.  相似文献   

12.
We present the results of manned studies in which test subjects were exposed to simulated zero g (water immersion or head-down tilt at ?6°) and head-to-feet acceleration. The findings give evidence that humans have different individual tolerances to an acceleration of +3 Gz after exposure to zero g, whether simulated by immersion or by head-down tilt. The paper discusses the functional relationship between water balance and cardiac output in the establishment of adaptive reactions to simulated zero g.  相似文献   

13.
The Cold Arctic Mesopause Program (CAMP) was conducted at ESRANGE, Sweden, in July/August 1982. During the time period of several weeks, the temperature was monitored by ground-based OH emission spectrometers and by stellite radiance measurements. Rocket launchings occurred on the nights of 34 and 1112 August. On 34 August, seven rocket payloads were launched during a period of noctilucent cloud sighting over ESRANGE. The presence of the NLC was confirmed by several rocket-borne photometer profiles. The temperature measurements showed that the temperature profiles in the stratosphere and lower mesosphere were near the expected values of high latitude summer models. A large amplitude wave structure with three temperature minima of 139K, 114K and 111K were observed at altitudes between 83 and 94 km. The temperature minimum at 83 km was the location of the observed NLC. The temperature minima caused by the growth of the gravity wave amplitude in the highly stable mesosphere provide the regions for the growth of particles by nucleation to optical scattering size, as well as regions where the nuclei for condensation can be formed through ion chemistry paths.  相似文献   

14.
15.
We note that far-from-equilibrium chemical systems can respond very sensitively to gravity. The response could be in selection of possible structures or in the formation of propagating bands. In these cases the sensitivity is characterized by the factor (Eg/kT)1n, where n=2 or 3, Eg the interaction energy, k the Boltzmann constant and T, the temperature. Also, taking the thermodynamic fluctuations into account, we obtain the theoretical limit for the minimum field strength measurable by such systems.  相似文献   

16.
Drift instabilities arising when accelerated protons are trapped by coronal magnetic fields of active regions are investigated theoretically. If β, the ratio of total (plasma + energetic particles) pressure and magnetic field pressure is larger than some value, β?0.1 to 0.3, the magnetic trap is destructed and protons are released into interplanetary space. If β < β1, the trapped protons excite gradient instability due to magnetic drift resonance. This “universal” instability results in rapid development of strong Alfvén wave turbulence with small wavelengths transverse to the magnetic field. Particle diffusion due to the waves has a rather complicated character and appears to be weak as compared to quasilinear diffusion. The role of Alfvén waves may consist in additional heating of the corona in the regions of closed magnetic field lines.  相似文献   

17.
18.
Doppler and ranging measurements using the radio signal of the GIOTTO spacecraft were taken before, during, and after the encounter with Comet Halley on 1314 March 1986. The spacecraft velocity was found to decrease by a total of 23.3 cm s?1 due to impacting gas and (primarily) dust in the cometary atmosphere. A preliminary dust production rate Qd ? 10 × 103kg s?1 is found to be consistent with this deceleration. Power spectra of the carrier phase fluctuations reveal an increase in level and a flattening of the spectrum just prior to encounter, presumably associated with the enhanced dust impact rate. Finally, simulated Doppler time profiles are computed using the radial dependence of plasma density observed by the GIOTTO in situ investigations. It is shown that the cometary electron content profile would have been clearly seen if a dual-frequency downlink radio configuration had been available at encounter.  相似文献   

19.
The metabolic consequence of suboptimal (400 μmol mol−1 or ppm), near-optimal (1500 ppm) and supra-optimal (10,000 ppm) atmospheric carbon dioxide concentrations [CO2] was investigated in an attempt to reveal plausible underlying mechanisms for the differential physiological and developmental responses to increasing [CO2]. Both non-targeted and targeted metabolite profiling by GC–MS and LC–MS were employed to examine primary and secondary metabolites in wheat (Triticum aestivum, cv Yocoro rojo) continuously exposed to these [CO2] levels for 14, 21 and 28 days. Metabolite profile was altered by both [CO2] and physiological age. In general, plants grown under high [CO2] exhibited a metabolite profile characteristic of older plants under ambient CO2. Elevated [CO2] resulted in higher levels of phosphorylated sugar intermediates, though no clear trend in the content of reducing sugars was observed. Transient starch content was enhanced by increasing [CO2] to a much greater extent at 10,000 ppm CO2 than at 1500 ppm CO2. The percentage increase of starch content resulting from CO2 enrichment declined as plants develope. In contrast, elevated [CO2] promoted the accumulation of secondary metabolites (flavonoids) progressively to a greater extent as plants became mature. Elevated [CO2] to 1500 ppm induced a higher initial growth rate, while super-elevated [CO2] appeared to negate such initial growth promotion. However, after 4 weeks, there was no difference in vegetative growth between 1500 and 10,000 ppm CO2-grown plants, both elevated CO2 levels resulted in an overall 25% increase in biomass over the control plants. More interestingly, elevated atmospheric [CO2] reduced evapotranspiration rate (ET), but further increase to the supra-optimal level resulted in increased ET (a reversed trend), i.e. ET at 1500 ppm < ET at 10,000 ppm < ET at 400 ppm. The differential effect of elevated and super-elevated CO2 on plants was further reflected in the nitrogen dynamics. These results provide the potential metabolic basis for the differential productivity and stomatal function of plants grown under elevated and super-elevated CO2 levels.  相似文献   

20.
Power-law spectra f(E)∝E?2.7 of < 40 keV suprathermal ions within ~107 km of propagating interplanetary shocks are explained by diffusive scattering near a plane shock. The theory fits the 25 November 1977 event with a mean free path perpendicular to the shock with is 0.01 AU in front of the shock and less than .0003 AU behind it, for 1 keV ions. The theory predicts a steepening spectrum at higher energies, of the form f(v)∝v?4exp(??λdv/ur) where u = (ΔV)2/2VW depends on the plasma velocity jump ΔV and the plasma speed VW and mean free path λ in front of the shock  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号