首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments.  相似文献   

2.
Two ESA facilities will be available for animal research and other biological experiments on the International Space Station: the European Modular Cultivation System (EMCS) in the US Lab "Destiny" and BIOLAB in the European "Columbus" Laboratory. Both facilities use standard Experiment Containers, mounted on two centrifuge rotors allowing either research in microgravity or acceleration studies with variable g-levels from 0.001 to 2.0 x g. Standard interface plates provide each container with power and data lines, gas supply (controlled CO2, O2 concentration and relative humidity), and--for EMCS only--connectors to fresh and waste water reservoirs. The experiment hardware inside the containers will be developed by the user, but ESA conducted a feasibility study for several kinds of Experiment Support Equipment with potential use for research on small animals: design concepts for experiments with insects, with aquatic organisms like rotifers and nematodes, and with small aquatic animals (sea urchin larvae, tadpoles, fish youngsters) are described in detail in this presentation. Also ESA's initial steps to support experiments with rodents on the Space Station are presented.  相似文献   

3.
An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.  相似文献   

4.
China's manned spaceflight missions have been introduced briefly, and the research planning of space sciences for China's Space Station (CSS) has been presented with the topics in the research areas, including:life science and biotechnology, microgravity fluid physics and combustion science, space material science, fundamental physics, space astronomy and astrophysics, earth sciences and application, space physics and space environment, experiments of new space technology. The research facilities, experiment racks, and supporting system planned in CSS have been described, including:multifunctional optical facility, research facility of quantum and optic transmission, and a dozen of research racks for space sciences in pressurized module, etc. In the next decade, significant breakthroughs in space science and utilization will hopefully be achieved, and great contributions will be made to satisfy the need of the social development and people's daily life.   相似文献   

5.
Space Research Plan of China's Space Station   总被引:1,自引:0,他引:1       下载免费PDF全文
China's manned spaceflight missions have been introduced briefly,and the research planning of space sciences for China's Space Station(CSS) has been presented with the topics in the research areas,including:life science and biotechnology,microgravity fluid physics and combustion science,space material science,fundamental physics,space astronomy and astrophysics,earth sciences and application,space physics and space environment,experiments of new space technology.The research facilities,experiment racks,and supporting system planned in CSS have been described,including:multifunctional optical facility,research facility of quantum and optic transmission,and a dozen of research racks for space sciences in pressurized module,etc.In the next decade,significant breakthroughs in space science and utilization will hopefully be achieved,and great contributions will be made to satisfy the need of the social development and people's daily life.  相似文献   

6.
To study the effect of the space environment on plant growth including the reproductive growth and genetic aberration for a long-term plant life cycle, we have initiated development of a new type of facility for growing plants under microgravity conditions. The facility is constructed with subsystems for controlling environmental elements. In this paper, the concept of the facility design is outlined. Subsystems controlling air temperature, humidity, CO2 concentration, light and air circulation around plants and delivering recycled water and nutrients to roots are the major concerns. Plant experiments for developing the facility and future plant experiments with the completed facility are also overviewed. We intend to install this facility in the Japan Experiment Facility (JEM) boarded on the International Space Station.  相似文献   

7.
空间站燃烧科学实验系统设计   总被引:2,自引:2,他引:0  
建立空间站燃烧实验系统,可满足未来空间微重力燃烧实验系统需求.通过空间站微重力燃烧实验研究,可拓展空间燃烧学研究.根据所要实现的功能及燃烧实验需求,对中国空间站燃烧柜的燃烧科学实验系统进行了设计和分析.燃烧科学实验系统由8个子系统组成,是一个适合开展气、液、固多种燃料燃烧实验的综合性实验系统.考虑到强度设计要求,在完成方案设计后,对系统进行了有限元分析,并在研制的结构件上进行了力学环境实验.实验与分析结果表明,本文设计的实验系统能够满足环模实验的要求,结构合理可行.   相似文献   

8.
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).  相似文献   

9.
空间站微重力流体实验设备需求分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对国际空间站和中国科学实验卫星及载人飞行器上开展的微重力流体实验情况进行论述和分析,重点分析了国际空间站(ISS)微重力流体科学实验设备情况.根据中国空间微重力流体物理科学发展需求,结合国际空间站微重力流体科学实验对设备的需求,提出了未来在中国空间站开展微重力流体实验时空间实验设备需要重点考虑和解决的问题,同时提出相关设计建议.   相似文献   

10.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

11.
In the gravitational field on Earth, the large settling rate of micron-sized particles and the effects of gravity-induced convection prohibit many interesting studies of phenomena such as coagulation, collisions, and mutual interactions of droplets, dust grains and other particles. Examples of exobiology experiments involving these phenomena are the simulation of organic aerosol formation in Titan's atmosphere, studies of the role of comets in prebiotic chemical evolution, and simulations of carbon grain interactions in various astrophysical environments. The Gas-Grain Simulation Facility (GGSF) is a proposed Earth-orbital laboratory that will allow present ground-based experimental programs which study processes involving small particles and weak interactions to be extended to a new domain. Physics issues that scientists wishing to propose GGSF experiments must consider are reviewed in this paper. Specifically, coagulation, motion in gases and vacua, and wall deposition of particles in a microgravity environment are discussed.  相似文献   

12.
The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development.  相似文献   

13.
This paper briefly introduces the history of China's Manned Space Flight Program and concludes the experiments done since 2008, namely, a small satellite and a material science experiment. An outlook of future Chinese Space Station is also described at the end.   相似文献   

14.
The isothermal dendritic growth apparatus (IDGA) is currently being designed by the Rensselaer Polytechnic Institute in cooperation with the NASA Lewis Research Center. We describe some of the generic features of this apparatus system including precise temperature control, accurate temperature measurement, modular photographic system, and telescience capability. We briefly mention other types of microgravity experiments which could make use of the IDGA facility with only minor modifications to the present design. The IDGA is currently being manifested on the Material Science Laboratory carrier and the United States Materials Laboratory I, as well as being considered for inclusion on the future Space Station. The IDGA can provide a carefully controlled long-duration microgravity environment as provided by the Shuttle orbiter and, ultimately, the Space Station. The intent of this paper is to acquaint researchers with the nature of this facility.  相似文献   

15.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   

16.
Analysis of flight opportunities of existing and new microgravity multi-user facilities on Eureca and Spacelab and design studies of new experimental facilities for Columbus are presently in progress.

The materials and fluid sciences research community is likely to be a major user of the permanently manned Space Station/Columbus elements such as the European Attached Pressurised Module (APM) and the Man-Tended Free Flyer (MTFF).

In metallurgy, crystal growth and bioengineering initial research will be performed in the manned laboratory, whereas later on the processing will be automated and executed on unmanned platforms.

At present ESA prepares - in close cooperation with the scientific community - the hardware development of microgravity experimental facilities/laboratories for all Columbus elements through design studies. Preliminary studies which have been carried out to date are the following : Crystallisation Laboratory, Fluid Sciences Laboratory, Containerless Processing Laboratory, Thermophysical Properties Measurement Facility, Metallurgy Laboratory.

In 1998 it is planned to deepen these studies covering laboratories for the APM and for the MTFF. Details on flight opportunities in the pre-Columbus period will also be provided.  相似文献   


17.
空间增材制造技术的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
中国空间站旨在进行大量在轨科学实验和空间应用研究,在轨保障是支持空间站在全寿命周期内完成载人航天任务的重要途径.传统地面制造及上行补给方式难以满足较大规模应用的需求,亟需一种创新性的保障模式突破资源瓶颈,空间增材制造技术具有极大的潜力实现即造即用的资源保障模式.本文根据空间增材制造技术的最新研究进展,结合中国空间站和载人深空探测任务需求,对空间增材制造技术的在轨应用模式进行分析,提出了中国空间增材制造技术未来发展所面临的问题和解决途径.   相似文献   

18.
Two ESA facilities will be available for plant research and other biological experiments on the International Space Station: the Modular Cultivation System (MCS) and BIOLAB. While BIOLAB will be launched with the European "Columbus" Module, MCS will be part of the Early Utilisation Agreement with NASA and integrated in the US Lab. Both facilities use standard Experiment Containers, mounted on two centrifuge rotors providing either microgravity or variable g-levels up to 2xg. Transparent covers allow illumination and observation (also near-infrared) of the internal experiment hardware containing the plant specimen. Standard interface plates provide each container with power and data lines, gas supply (controlled CO2, O2 and water vapour concentration; ethylene removal), and--for MCS only--connectors to water reservoirs. Besides the two concepts of environmental control in both facilities, there is a difference in container size (BIOLAB 0.36 l, height with respect to the g-vector 60 mm; MCS 0.58 l, height 160 mm) and in the degree of automation. The design of BIOLAB and MCS will be complimentary to NASA's Plant Research Unit (volume 20 l, height 380 mm) and should allow continuation of Space research on protoplasts, callus cultures, algae, fungi and seedlings, as earlier flown on Biorack, and new experiments with larger specimens of fungi, mosses and vascular plants.  相似文献   

19.
As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. Here we discuss the concept of closure as it pertains to CELSS and describe engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5% of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in this facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.  相似文献   

20.
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号