首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
将光纤光栅传感器与碳纤维复合材料进行一体化集成设计,在碳纤维复合材料内部植入光纤光栅传感器,验证了埋置工艺的可行性,确认了其可实时监测环境温度值,研究了植入光纤光栅传感器后碳纤维复合材料的结构强度变化及光纤光栅的信号传递率。试验结果表明:碳纤维复合材料埋入光纤光栅传感器前后结构强度变化率小于10%,光纤应变信号传递率高于90%,光纤光栅传感器可以作为碳纤维复合材料结构进行从加工固化、使用过程直至破坏的全寿命周期的结构强度监测的有效手段。  相似文献   

2.
针对复合材料气瓶应变检测的需求,提出了一种光纤光栅传感器植入碳纤维缠绕铝合金内衬的复合材料气瓶的方法,首先在室温下将光纤光栅传感器粘接在经过喷砂处理的铝合金内衬外表面,然后对粘接了光纤光栅传感器的铝合金内衬进行高温老炼,最后进行碳纤维缠绕和固化。开展了8只光纤光栅应变传感器植入复合材料气瓶的试验,其中6只传感器在复合材料气瓶150 ℃/1.5 h固化后保持存活,实现了复合材料气瓶固化、水压疲劳、高温试验等过程中的应变检测。结果表明,所提出的方法可以减小内衬的粗糙外表面导致的光纤光栅信号衰减,验证了光纤光栅传感器植入复合材料气瓶进行应变检测的可行性。  相似文献   

3.
利用铝合金标准梁和复合材料标准梁的纯弯实验,标定了光纤布拉格光栅(FBG)的应变灵敏度系数,与理论灵敏度系数进行了对比,检验了布拉格光栅中心波长的变化与应变的线性关系及重复性。研究结果表明:布拉格光栅监测金属和复合材料的应变具有良好的重复性和线性关系,可以用于结构关键部位的应变监测。  相似文献   

4.
光纤光栅传感器是实现复合材料内部结构健康监测的最佳选择,可实现对复合材料冲击载荷位置的实时识别,锁定损伤区域,视情检测,提高效率,减小安全隐患.将光纤光栅传感器在复合材料层合板预浸料阶段埋入,通过热压罐固化方式成型为一体化结构,研究传感器对层合板不同位置载荷冲击的识别技术;并将12支光纤光栅传感器内埋于航空飞机典型复合材料加筋板结构,通过互相关函数算法成功实现了小尺寸加筋板结构的冲击定位判别.  相似文献   

5.
压电-光纤综合结构健康监测系统的研究及验证   总被引:2,自引:0,他引:2  
袁慎芳  邱雷  王强  苗苗  余振华 《航空学报》2009,30(2):348-356
以某型无人机机翼盒段试验件为对象,进行了压电-光纤综合结构健康监测系统的研究。自主研发了国内首台集成压电多通道扫查系统,可实现多达552个激励 传感通道的损伤自动扫查,并同光纤光栅解调系统组合,自行开发了集成健康监测系统软件,构成了压电-光纤综合结构健康监测系统。基于该系统进行了大型碳纤维复合材料盒段试验件弯扭强度实验过程中的结构健康监测功能验证研究,监测结构尺寸达4000 m×1200 m×0.265 m,监测对象包括结构的应变场分布及抽钉失效。系统监测了全盒段上下壁板共34点的应变场分布情况,应变场监测准确;监测系统不仅对结构抽钉的缺失实现了准确监测,而且可以分辨所实验结构的4种抽钉缺失程度。  相似文献   

6.
含孔金属结构的孔边裂纹监测对于保障飞行安全,增强飞机结构可靠性具有重要意义。为实现对孔边裂纹扩展的监测,进行含有孔边角裂纹的含孔铝合金板疲劳加载试验,得到含孔铝合金板试验件的a-N 曲线以及孔边裂纹扩展过程中光纤光栅应变传感器中心波长偏移量;利用包络分析法、BP 神经网络等损伤识别算法对试验数据进行处理与分析;建立能够以光纤光栅应变传感器中心波长偏移量识别孔边裂纹扩展的监测模型,并通过试验对监测模型进行验证。结果表明:此监测模型可有效识别出孔边角裂纹的扩展与穿透,对孔边角裂纹扩展长度监测的准确度达到了97.2%,未来可应用于全机地面疲劳试验、飞机结构健康监测等多种场景。  相似文献   

7.
航空航天复合材料结构健康监测技术研究进展   总被引:1,自引:0,他引:1  
通过在线监测结构响应,实时掌握结构的健康状况,并在此基础上对可能发生的损伤和故障进行预报,以便能及时采取措施,保证复合材料结构的服役安全.综述了几种重要的结构健康监测方法的研究进展、应用场合与发展历程,包括:全局状态感知技术(光纤传感监测法)、全局损伤诊断技术(波传播损伤诊断法)、局部损伤诊断方法(机电阻抗监测法、真空比较监测法、智能涂层法等),讨论了复合材料结构健康监测传感器的安装方法.结合各种技术的发展历程和优缺点展望了航空航天复合材料结构健康监测技术的发展趋势.  相似文献   

8.
复合材料补片胶接金属机体结构损伤修补方法设计研究   总被引:3,自引:0,他引:3  
复合材料补片胶接金属机体结构损伤修补方法,是国外近十年来发展起来的一项修理技术。同常规机械连接修补方法相比,这项技术有很多优势,例如:不需要增加紧固孔,因此不会产生新的应力集中区域;复合材料补片成型简单,适合于复杂形状零件的修补;利用无损检测技术(例如涡流法)可对服役中修补后的飞机结构损伤进行监测。笔者在了解国外研究状况的基础上,结合概念研究和初步分析,就这项技术的设计问题提出了一些基本看法和观点,包括设计思想、影响因素、有限元模型和修补效果评估方法。  相似文献   

9.
将光纤内置于纤维增强复合材料结构中,可以实现复合材料结构的实时健康监测,具有成本低、不受电磁干扰、能监测结构内部变化等特点。采用内置光纤实时监测复合材料结构的健康状态是复合材料结构无损检测技术的重要发展趋势。  相似文献   

10.
布拉格光栅对沿其纵向的非均匀应变分布十分敏感,这种影响会反映在传感器位置的反射光谱光强中.本文提出了一种利用外贴光栅监测带双缺口碳纤维复合材料损伤的新技术.实验结果表明,当带双缺口碳纤维复合材料损伤产生及扩展时,光栅的反射光强在某些波长变化明显,反射光谱的突变点与复合材料静态拉伸应变—光栅中心波长曲线突变点一一对应.该方法可用于预测复合材料的损伤状态.  相似文献   

11.
国外直升机发动机监视系统   总被引:1,自引:0,他引:1  
本文介绍了国外直升机发动机监视目的、内容、通过对已有发动机监视系统的统计分析,得到了典型发动机监视系统应该具备的目标、组成、功能和记录参数,这对发动机监视系统的设计具有重要指导意义。  相似文献   

12.
远程实时监控技术是目前国内外航空公司十分关注的,它不仅标志状态监控技术的发展,而且它的应用必将加强航空公司的安全和获得更大的效益,并简要介绍了该项技术研究情况和所遇问题。  相似文献   

13.
飞机结构健康监测与管理技术研究进展和展望   总被引:1,自引:0,他引:1  
飞机结构是飞机平台的基础,是确保飞机安全、长寿命使用的最重要的承力架构.随着航空技术的不断发展,飞机设计思想不断演变发展,对飞机机体结构性能也不断提出更高的要求.严酷的使用环境和严格的功能/性能综合要求,使得结构完整性面临重大挑战.飞机结构健康监测与管理技术具有实时性、在线性等优势,是保证结构安全性、降低维护费用的重要...  相似文献   

14.
在分析刀具状态监控系统关键技术的基础上,结合航空结构件数控铣削加工领域对刀具状态监控系统的研究,分析了ARTIS系统的组成、工作原理和应用方法,介绍了智能刀柄和视觉检测方法的研究进展,给出了各种加工过程刀具状态监控系统的研发建议和应用展望。  相似文献   

15.
本文通过结合监测应用的实例,讨论了监测信号同步处理的一些问题。并提出采用同步处理的方法,将监测应用有机地结合起来,以建立一个完整的监测系统。  相似文献   

16.
空心涡轮叶片一直是制约我国高性能航空发动机研制的瓶颈。针对空心涡轮叶片精铸合格率较低的问题,在讨论涡轮叶片精密铸造工艺的基础上,从精铸"控形"及"控性"两方面,对涡轮叶片精铸成形技术的研究成果进行了总结。此外,围绕未来更高性能航空发动机涡轮叶片,从材料、结构、工艺的角度对其发展趋势进行了讨论。分析认为,陶瓷基复合材料有望在发动机涡轮叶片上得到更广泛的应用。  相似文献   

17.
GNSS用户端自主完好性监测研究综述   总被引:5,自引:1,他引:4  
随着全球卫星导航系统的快速发展,对航空安全提出了挑战,完好性监测问题愈发凸显,用户端自主完好性监测(RAIM)是研究的重点之一。针对RAIM问题,首先介绍了所需导航性能的4个重要参数:精度、完好性、可用性和连续性。从单卫星故障下的RAIM、多卫星故障下的RAIM、高斯噪声下的RAIM 3个方面,综述了国内外相关的重要研究,主要涉及了3个层次内容:算法、计算保护限值和可用性,并指出了目前研究存在的不足。其次介绍了近期研究的新趋势与取得的成果。最后,展望了未来的研究方向。  相似文献   

18.
卫星地面站设备监控系统的控制具有时效性,主要表现在卫星地面站设备配置用时较长,时效性不高,在任务准备中占时比例大,制约了卫星系统的应用效率.针对该问题,分析了影响制约设备监控系统控制效能的相关因素,有针对性地提出了应对措施及对策,如细化设备控制脚本分类,取消命令之间的延时冗余,改善响应机制,采用并串行混合控制,预先优化宏命令解析等.经过检验,这些方法是有效可行的,有利于提高设备控制效能.  相似文献   

19.
讨论了航空发动机主要零部件的典型应力谱及寿命分析和监测方法,得到了有意义的结论。  相似文献   

20.
飞机机载状态监控系统(ACMS)可通过地面配置工具对其进行客户化的配置。本文先阐述了对机上ACMS系统进行客户化配置的方法,并基于客户对飞机状态参数监控的需求,通过实例说明了ACMS系统客户化配置在飞机运营中的重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号