首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过等温恒应变速率热模拟压缩试验,研究了一种铸态组织的阻燃钛合金在变形温度900~1200℃,应变速率0.001~1s-1下的高温流变应力和组织演变,计算了变形激活能及应力指数,并给出了该合金变形的本构方程.结果表明,此种阻燃钛合金高温变形是扩散控制的过程,软化机制以动态回复为主,但在应变速率较高时会发生项链状动态再结晶,而在应变速率较低时会发生连续再结晶,合金中的碳化物形貌在高温变形过程中也会发生转变.  相似文献   

2.
在温度950~1150℃、应变速率0.001~1 s–1及工程应变50%条件下,利用Gleeble-3500TM热模拟试验机对挤压态喷射成形GH738合金进行热压缩实验,研究合金的流变应力,建立合金热变形本构关系,利用EBSD分析合金组织演变。结果表明:合金流变应力随温度的升高和应变速率的减小而降低,在相同变形条件下,具有细晶组织特征的挤压态喷射成形GH738合金峰值流变应力低于粗晶组织的铸锻GH738合金;挤压态喷射成形GH738合金热变形激活能为651.08 kJ·mol–1,GH738合金的热变形激活能随着初始平均晶粒尺寸的减小而升高;形变温度的升高使挤压态喷射成形GH738合金初始被拉长的晶粒逐渐演变为等轴再结晶晶粒,在1000℃以上获得完全动态再结晶组织,再结晶组织随形变温度的进一步升高发生长大。  相似文献   

3.
Ti-45Al-5Nb-0.3Y合金的等温热变形模拟及包套锻造   总被引:2,自引:0,他引:2  
采用Gleeble-1500热力模拟机对Ti-45Al-5Nb-0.3Y (at%)合金在不同温度和变形速率下的流变应力进行了实验研究,并对此材料进行了包套锻造,分析了变形组织及压缩性能.结果显示,TiAl合金的真应力-真应变曲线显示典型的动态再结晶软化特征,流变应力随应变速率的升高和变形温度的降低而升高,在1200℃/0.01s-1条件下变形后试样外观质量好;利用Zener-Hollomon参数计算了此合金的热变形激活能,Q=399.5kJmol-1;在α γ双相区一次包套锻造,总变形量达70%,锻坯质量良好,锻后组织由大量弯曲、破碎的层片,细小的再结晶晶粒及少量平直层片组成,动态再结晶主要发生在原层片晶团的界面处,经1150℃/80min热处理后,合金发生广泛的再结晶形成了大量细小均匀的等轴γ晶粒,平均晶粒尺寸约为10μm,但仍有少量残余层片存在;室温压缩实验表明,锻造后合金的强度和塑性提高,这与锻造后显微组织的细化有关.  相似文献   

4.
在Gleeble~1500热模拟实验机上,采用高温等温压缩,应变速率为0.001~10/s,变形温度为360~520%,对通用型铝锂合金在高温压缩变形中的流变应力行为进行了研究,分析了其高温变形的物理本质。结果表明:在等应变速率下,真应力随温度的升高而降低;在相同的变形温度下,随应变速率的增加,流变应力水平升高。在较低的变形速率及较高的变形温度条件下热变形时,通用型铝锂合金容易发生动态再结晶。而变形速率较高,变形温度较低时,通用型铝锂合金可能发生剪切变形,热变形过程中则主要发生动态回复。  相似文献   

5.
采用Gleeble-1500热模拟机对新型第三代镍基粉末高温合金FGH98Ⅰ在不同变形温度(950~1150℃)及不同变形速率(0.0003~1s-1)下高温变形行为进行了研究,绘制了动态RTT曲线,并建立了合金的热变形本构关系。结果表明:合金的流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≤1100℃、应变速率≥0.0003s-1时,其流变应力随应变量增加呈动态再结晶特征;在应变速率≤0.01s-1的高温变形条件下,其动态再结晶的开始时间与变形温度无线性关系;实验验证了采用考虑应变量的双曲正弦模型能较好地反映合金在热变形过程中流变应力的变化规律。  相似文献   

6.
采用热模拟试验对一种含银Al-Cu-Mg耐热铝合金进行热压缩试验,研究了合金在热压缩变形温度和应变速率分别为340~500℃,0.001~10s-1的条件下的流变应力行为和变形组织.结果表明:合金的流变应力随应变速率的增大而增大,随变形温度的升高而减小.该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为196.27kJ/mol.在较低的变形温度或较高的应变速率下,合金组织中主要存在沿垂直于压缩方向拉长了的晶粒.随着变形温度的升高或应变速率的降低,拉长的晶粒发生粗化,并且合金中出现了再结晶晶粒,说明合金中的主要软化机制逐步由动态回复转变为动态再结晶.该合金较适宜的热轧温度为380~460℃,应变速率为0.1~10s-1.  相似文献   

7.
本文对两相钛合金Corona5(Ti-4.5Al-5Mo-1.5Cr)在对称压缩时的等温塑性流变行为进行了分析研究。发现高温压缩时,此两相合金存在强烈的流变软化现象,动态再结晶和形变诱导转变等动态软化过程是引起流变软化的主要原因。形变热在高速时起重要作用,并用插值法进行了形变热修正。形变参数对软化有着重要影响,温度降低,形变速率提高,流变软化愈强烈。根据实验数据,提出一组流变应力计算公式,这些公式用于热加工模拟中,在合金组织成型时预测压力大小和所需的功率(能量)范围。  相似文献   

8.
在Gleeble-3500热模拟试验机上对粉末冶金TiAl合金进行热压缩试验,变形温度为1050~1200℃,,应变率0.001~0.1 s-1,工程应变量为50%,研究其在高温压缩变形中的流变应力行为。研究结果表明:在实验范围内,粉末冶金TiAl合金在热压缩变形过程中发生了明显的动态再结晶,其流变应力随应变速率的增大而增大,随变形温度的升高而降低;粉末冶金TiAl合金热压缩变形过程的流变行为可用包含Arrhenius项的Zener-Hollomon参数来描述,所获得的峰值应力表达式为:σ=90.91ln{(Z/1.68×1016)1/2.06+[(Z/1.68×1016)2/2.06+1]1/2},其变形激活能为477.56kJ/mol,经验算该方程可以较好地描述该合金的变形特点。  相似文献   

9.
提出了一种先低后高的变应变速率组合等温压缩细晶方法,通过两次连续变形,得到70%以上变形量而不产生裂纹,获得了良好的细晶效果。流变应力曲线出现明显的动态软化现象,其机制为动态再结晶;在采用低应变速率进行第一次变形后,由于动态再结晶的发生,使第二次高应变速率变形时,应力降低并且可以获得较大变形量,晶粒细化充分;在两次变形之间增加保温处理,可以使细小动态再结晶晶粒得到静态球化,使细晶程度提高。  相似文献   

10.
采用Gleeble热模拟机进行热压缩实验,研究7150铝合金在变形温度为300~450℃、应变速率为0.01~10s-1条件下的变形行为,采用Zener-Hollomon参数法构建合金高温塑性变形本构方程,并对变形后的微观组织进行分析。研究表明:7150铝合金的流变应力随应变速率增大而增大,随变形温度增大而降低。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述,其参数A为4.161×1014s-1,α为0.01956 MPa-1,n为5.14336,热变形激活能Q为229.7531k J/mol。随着温度升高和应变速率降低,动态再结晶逐渐取代动态回复成为合金的主要软化机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号