首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capture and detumbling control for active debris removal by a dual-arm space robot
Institution:1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi’an 710072, China;2. Research Center for Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:Active debris removal (ADR) technology is an effective approach to remediate the proliferation of space debris, which seriously threatens the operational safety of orbital spacecraft. This study aims to design a controller for a dual-arm space robot to capture tumbling debris, including capture control and detumbling control. Typical space debris is considered as a non-cooperative target, which has no specific capture points and unknown dynamic parameters. Compliant clamping control and the adaptive backstepping-based prescribed trajectory tracking control (PTTC) method are proposed in this paper. First, the differential geometry theory is utilized to establish the constraint equations, the dynamic model of the chaser-target system is obtained by applying the Hamilton variational principle, and the compliance clamping controller is further designed to capture the non-cooperative target without contact force feedback. Next, in the post-capture phase, an adaptive backstepping-based PTTC is proposed to detumble the combined spacecraft in the presence of model uncertainties. Finally, numerical simulations are carried out to validate the feasibility of the proposed capture and detumbling control method. Simulation results indicate that the target detumbling achieved by the PTTC method can reduce propellant consumption by up to 24.11%.
Keywords:Active debris removal  Adaptive backstepping control  Compliant clamping control  Prescribed trajectory tracking  Space robot
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号