首页 | 本学科首页   官方微博 | 高级检索  
     

回转表面上非测地线缠绕方程及其解
引用本文:邹蒙,黄毓圣. 回转表面上非测地线缠绕方程及其解[J]. 宇航学报, 1987, 0(2)
作者姓名:邹蒙  黄毓圣
作者单位:北京玻璃钢研究所(邹蒙),北京玻璃钢研究所(黄毓圣)
摘    要:本文利用微分几何推导了回转表面上的非测地线缠绕方程,并用Runge-Kutta-Fehlberg法求解。此法与文献的分段圆锥法对比,两者计算结果很一致,说明在工程中都是可用的。

关 键 词:旋成体  非测地线缠绕  运动方程  数值解  朗格—库塔法  应用

EQUATION AND SOLUTION FOR NON-GEODESIC WINDING ON A SURFACE OF REVOLUTION
Zou Mon Huang Yusheng. EQUATION AND SOLUTION FOR NON-GEODESIC WINDING ON A SURFACE OF REVOLUTION[J]. Journal of Astronautics, 1987, 0(2)
Authors:Zou Mon Huang Yusheng
Affiliation:Beijing GRP Research Institute
Abstract:In this pepar, an equation for non-geodesic winding on a surface of revolution is derived from differential geometry and solved with the Runge-Kutta-Fehlbery method. Calculation and analysis have been made for the equation and compared with the method in which a surface of revolution is divided into several conical sections shown in the reference. They conform each other and are practicable in engineering
Keywords:Body of revolution   Non-geodesic winding   Motion equation   Numerical solution   Runge-Kutta method   Application.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号