首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进ALO-RBF的高频地波雷达海杂波预测模型
作者姓名:张先芝  尚尚  戴圆强  杨童  刘明
作者单位:江苏科技大学海洋学院 镇江 212100
基金项目:国家自然科学基金项目(61801196);国防基础科研计划稳定支持专题项目(JCKYS2020604SSJS010);江苏省研究生科研与实践创新计划资助项目(SJCX22_1889)
摘    要:
高频地波雷达是海上动目标检测的重要手段,其中海杂波是影响海面目标检测性能的主要因素。为了提高海杂波的预测精度进而有效抑制海杂波,本文提出了一种基于改进蚁狮算法(Ant Lion Optimizer,ALO)优化RBF神经网络的海杂波预测模型(MGPALO-RBF,Multiple elites dynamic guidance Ant Lion Optimizer based on Gaussian difference variation-based learning with Perturbation factor-radial basis function)。由于标准蚁狮算法具有易陷入局部最优且收敛速度慢的缺点,本文在蚂蚁进行随机行走的过程中加入扰动因子以增加种群的活跃性和多样性,并提出多个精英动态引导机制,强化算法前期的探索能力和后期的开发能力,同时对种群中较差蚁狮进行高斯差分变异以提高算法的收敛速度。仿真结果表明:改进的蚁狮算法在对比算法中具有更高的收敛精度和收敛速度,MGPALO-RBF模型具有更好的海杂波预测性能。

关 键 词:高频地波雷达  海杂波  RBF神经网络  蚁狮算法
收稿时间:2022-04-11
修稿时间:2022-05-21
点击此处可从《遥测遥控》浏览原始摘要信息
点击此处可从《遥测遥控》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号