首页 | 本学科首页   官方微博 | 高级检索  
     

改进YOLOv4的表面缺陷检测算法
作者姓名:李彬  汪诚  丁相玉  巨海娟  郭振平  李卓越
作者单位:空军工程大学 基础部,西安 710038
摘    要:为解决航空发动机部件表面缺陷检测精度低、检测速度慢的问题,提出一种改进的YOLOv4算法进行智能检测。在路径聚合网络(PANet)结构中融合浅层特征与深层特征,增大特征检测尺度,同时去除自下而上的路径增强结构,提高小目标检测精度和整体检测速度;根据各类缺陷数量不同的情况,优化聚焦损失中的平衡参数,增加权重因子调节各类缺陷的损失权重,将改进后的聚焦损失代替分类误差中的交叉熵损失函数,降低样本不平衡和难易样本对检测精度的影响。实验表明:相比于原始YOLOv4算法,改进后的YOLOv4算法在测试集上的平均精度均值(mAP)为90.10%,提高了2.17%;检测速度为24.82 fps,提高了1.58 fps,检测精度也高于单发多框检测(SSD)算法、EfficientDet算法、YOLOv3算法和YOLOv4-Tiny算法。

关 键 词:YOLOv4  表面缺陷检测  航空发动机  小目标检测  聚焦损失
收稿时间:2021-06-04
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号