A novel fault tolerant permanent magnet synchronous motor with improved optimal torque control for aerospace application |
| |
Authors: | Guo Hong Xu Jinquan Kuang Xiaolin |
| |
Affiliation: | School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China |
| |
Abstract: | Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant permanent magnet synchronous motor is proposed, which is characterized by two stators and two rotors on the same shaft with a circumferential displacement of mechanical angle of 4.5°. It helps to reduce the cogging torque. Each segment of the stator and the rotor can be considered as an 8-pole/10-slot five-phase permanent magnet synchronous motor with concentrated, single-layer and alternate teeth wound winding, which enhance the fault isolation capacity of the motor. Furthermore, the motor has high phase inductance to restrain the short-circuit current. In addition, an improved optimal torque control strategy is proposed to make the motor work well under the open-circuit fault and short-circuit fault conditions. Simulation and experiment results show that the proposed fault tolerant motor system has excellent fault tolerant capacity, which is able to operate continuously under the third open-circuit fault and second shortcircuit fault condition without system performance degradation, which was not available earlier. |
| |
Keywords: | Actuator Fault isolation Fault tolerant Optimal torque control Permanent magnet motor |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《中国航空学报》浏览原始摘要信息 |
|
点击此处可从《中国航空学报》下载全文 |
|