首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Compton–Getting effect of energetic particles with an anisotropic pitch-angle distribution
Institution:Department of Physics and Space Science, Florida Institute of Technology, Melbourne, FL 32901, USA;School of Physics, Venter Street, Potchefstroom Campus, North West University, 2520 Potchefstroom, South Africa
Abstract:This paper presents a simulation of anisotropy measurements by the low-energy charged particle (LECP) experiment on Voyager 1 for cases when the particle pitch-angle distribution function in the solar wind plasma reference frame is not isotropic. The model includes both the Compton–Getting anisotropy and perpendicular diffusion anisotropy that possibly exists in the upstream region of the termination shock. The results show that the Voyager 1 data cannot rule out either the model with zero solar wind speed or the one with a finite speed on qualitative basis. The determination of solar wind speed using the Compton–Getting effect is affected by the assumption of the magnetic field direction and perpendicular diffusion anisotropy. Because the pitch-angle distribution anisotropy is so large, a small uncertainty in the magnetic field direction can produce very different solar wind speeds ranging from ∼0 to >400 km/s. In fact, if the magnetic field is chosen to be in the Parker spiral direction, which is consistent with the magnetometer measurement on Voyager 1, the derived solar wind speed is still close to the supersonic value. Only the two lowest-energy channels of the LECP instrument may give a definitive answer to the solar wind speed. However, because these channels contain a very high level of cosmic ray background, an uncertainty of just a few percent in the background can entirely hamper the estimate of solar wind speed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号