首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The quantum temperature of accelerating cosmological models of an entangled Universe
Institution:1. University of Applied Science, D-520964 Aachen, Germany;2. NASA Johnson Space Center, Houston, TX 77058, USA
Abstract:Since the conception of quantum cosmology was introduced by Lemaitre in 1931, many authors have discussed the quantum nature of the Universe. Yet the most significant new feature of quantum physics, the notion of quantum nonlocality and its verification using Earth-based experiments, is never addressed by cosmologists because they basically do not know how to deal with it. In the spirit of making the transition “from quarks to cosmos” we will demonstrate how this is done. We show how to estimate the temperature of the flat Friedmann–Lemaitre–Robertson–Walker spacetime using a spherically symmetric approximation of the metric in conjunction with Lee’s theorem for scalar quantum fields on curved backgrounds. This temperature dependence is not the same as the classical Gamow temperature which follows from general relativity for the radiation-dominated era of the Big Bang model, and we relate this result to the question of decoherence in the very early Universe.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号