首页 | 本学科首页   官方微博 | 高级检索  
     

试车数据驱动的涡轴发动机起动过程模型辨识
引用本文:董庆,李本威. 试车数据驱动的涡轴发动机起动过程模型辨识[J]. 航空发动机, 2022, 48(1): 6-12. DOI: 10.13477/j.cnki.aeroengine.2022.01.002
作者姓名:董庆  李本威
作者单位:海军装备部驻苏州地区军事代表室,江苏苏州215011;海军航空大学航空基础学院,山东烟台264001
基金项目:国家自然科学基金(51505492)、泰山学者建设工程专项经费资助
摘    要:针对传统的采用解析法建立涡轴发动机起动过程模型复杂的问题,提出了一种基于变步长萤火虫算法优化的有外部输入的非线性自回归网络(CSFA-NARX)的涡轴发动机起动过程模型辨识方法。以涡轴发动机起动过程试车试验数据为数据样本,利用CSFA-NARX网络模型辨识得到涡轴发动机起动过程模型,并采用留一交叉验证方法对辨识模型的性能进行验证。结果表明:得到的辨识模型输出参数,如燃气发生器转速ng、输出轴转速nr和涡轮后温度T4都较好地逼近了试车实测数据,各参数验证样本最大相对误差平均值分别为0.90%、1.51%、和2.01%;在相同训练与验证样本情况下,得到的辨识模型精度优于采用萤火虫算法优化的NARX网络(FA-NARX)、NARX网络和变步长萤火虫算法优化的BP网络(CSFA-BP)模型精度。

关 键 词:涡轴发动机  起动过程  数据驱动  变步长萤火虫优化算法  非线性自回归网络  模型辨识

Model Identification of Turboshaft Engine's Starting Process Driven by Test Data
DONG Qing,LI Ben-wei. Model Identification of Turboshaft Engine's Starting Process Driven by Test Data[J]. Aeroengine, 2022, 48(1): 6-12. DOI: 10.13477/j.cnki.aeroengine.2022.01.002
Authors:DONG Qing  LI Ben-wei
Affiliation:(Naval Armament Department Military Representative Office in Suzhou,Suzhou Jiangsu 215011,China;College of Aviation Foundation,Naval Aviation University,Yantai Shandong 264001,China)
Abstract:Aiming at the complex problem of establishing a turboshaft engine starting process model by traditional analytical methods,a nonlinear autoregressive network model method for turboshaft engine starting process based on the change of step of firefly algorithm optimization with external input was proposed.Taking the test data of the turboshaft engine starting process as the data sample,the model of the turboshaft engine starting process was obtained by using the CSFA-NARX network model identification,and the performance of the identification model was verified by the retention cross-validation method.The results show that the obtained identification model output parameters,such as gas generator speed ng,output shaft speed nr,and post-turbine temperature T4 all well approximate the test data,the ng,nr,T4 average maximum relative error between the training and the verification samples is respectively 0.90%,1.51%,and 2.01%.In the case of the same training and verification samples,the accuracy of identification model is better than that of the NARX network optimized by firefly algorithm(FA-NARX),NARX network and BP network optimized by change of step of firefly algorithm(CSFA-BP).
Keywords:turboshaft engine  starting process  data-driven  the change of step of firefly algorithm optimization  NARX network  model identification
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《航空发动机》浏览原始摘要信息
点击此处可从《航空发动机》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号