首页 | 本学科首页   官方微博 | 高级检索  
     

证据理论和神经网络结合的目标识别方法
引用本文:王毛路,李少洪,毛士艺. 证据理论和神经网络结合的目标识别方法[J]. 北京航空航天大学学报, 2002, 28(5): 536-539. DOI: 10.3969/j.issn.1001-5965.2002.05.010
作者姓名:王毛路  李少洪  毛士艺
作者单位:北京航空航天大学,电子工程系
摘    要:提出用证据理论和神经网络结合的高分辨率雷达(HRR)目标识别方法,即首先把多个目标高分辨一维距离像送入学习矢量量化神经网络,进行目标类证据估计;然后用D-S证据理论对各次估计结果进行融合.提出了连续特征空间离散化及类支持度构造的方法,并分析了神经网络识别的误差原因.仿真实验结果表明,这种方法的输出正确识别率比仅仅使用矢量量化神经网络有较大的改善,抗噪能力也有所提高.

关 键 词:神经网络  高分辨率雷达  识别
文章编号:1001-5965(2002)05-0536-04
收稿时间:2001-01-10
修稿时间:2001-01-10

Target Recognition Method by Combination of Neural Networks with Evidence Theory
WANG Mao-lu,LI Shao-hong,MAO Shi-yi. Target Recognition Method by Combination of Neural Networks with Evidence Theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5): 536-539. DOI: 10.3969/j.issn.1001-5965.2002.05.010
Authors:WANG Mao-lu  LI Shao-hong  MAO Shi-yi
Affiliation:Beijing University of Aeronautics and Astronautics, Dept. of Electronic Engineering
Abstract:A method based on the combination of neural networks with D S evidence theory was proposed to recognize HRR targets. Multiple HRR images were input into Learning Vector Qualification (LVQ) neural network to estimate target type evidence, the results were fused by D S evidence theory. Methods for feature space discretization and class evidence estimation were proposed. The origin of recognition error of neural network was analyzed. The results of emulation show that the correctness of this method is higher than that of LVQ network method obviously, the ability to counteract disturbance and noise is also raised.
Keywords:neural network  high resolution radar  recognition  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号