首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of Preform Shapes by RSM and FEM to Improve Deformation Homogeneity in Aerospace Forgings
Authors:Yang Yanhui  Liu Dong  He Ziyan  Luo Zijian
Institution:School of Materials Science and Engineering, Northwestern Polytechnical University, Xi''an 710072, China
Abstract:This article, in order to improve the deformation homogeneity in aerospace forgings, proposes an approach that combines the finite element method (FEM) and the response surface method (RSM) to optimize the preform shapes. New expressions that take into account the influences of equivalent effective strain distribution are developed to evaluate the homogeneity of deformation distribution in aerospace forgings. In order to reduce the number of design variables, the domain-division method is put forward to determine the optimal design variables. On the basis of FEM results, the RSM is used to establish an approximate model to depict the relationship between the responses (deformation homogeneity and die underfilling) and the design variables represented by geometric parameters of the preform shape. With a typical aeroengine disk as an example, the proposed method is verified by achieving an optimal combination of design variables. By comparing the preform shape obtained with the proposed method to that with the existing one, it is evidenced that the former could achieve more homogeneous deformation in forging.
Keywords:response surface method  optimization  preform design  finite element method
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号