首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A thermal activation based constitutive model for the dynamic deformation of AA5083 processed by large-scale equal-channel angular pressing
Institution:1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;3. Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Osaka 567-0047, Japan;4. Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore 21218, USA;5. Shaanxi Key Laboratory of Impact Dynamic and Its Engineering Application, Xi’an 710072, China
Abstract:Aluminum alloy 5083 (AA5083) processed by large-scale Equal-channel angular pressing (ECAP) is an excellent engineering material with great prospects for industrial applications. An accurate assessment of the underlying constitutive relationships with easily determined material constants is critical for the predictive design and informed processing of such structural materials. To develop such a design framework, uniaxial dynamic compressive tests over a wide range of temperatures (293–573 K) were carried out for an ECAP-processed AA5083 alloy. Additionally, the microstructure before and after dynamic loading was characterized by SEM and TEM. Based on the experimental results, a new dynamic constitutive model, based on thermal activation theory, was established to describe the plastic flow behavior of the AA5083 alloy that incorporates the effects of plastic strain, temperature, and strain rate. The input parameters of the new model were determined using a particle swarm optimization (PSO) method. The model predictions show excellent agreement with experimental results, which suggests that the current predictive constitutive model is highly effective in reproducing the dynamic deformation behavior of the large-scale ECAP-processed AA5083.
Keywords:Aluminum alloy 5083 (AA5083)  Constitutive models  Dynamic response  Equal channel angular pressing (ECAP)  Thermal activation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号