首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的结构光三维视觉检测方法
引用本文:李鑫,张广军,魏振忠. 基于RBF神经网络的结构光三维视觉检测方法[J]. 北京航空航天大学学报, 2002, 28(3): 265-268. DOI: 10.3969/j.issn.1001-5965.2002.03.005
作者姓名:李鑫  张广军  魏振忠
作者单位:北京航空航天大学,自动化科学与电气工程学院
基金项目:航空科研项目;99I51001;
摘    要:研究了基于RBF(Redial Basis Function)神经网络的结构光三维视觉检测方法.该方法利用RBF网络良好的非线性映射能力以及学习、泛化能力,通过所获取的高精度的样本数据来训练RBF网络,最终建立起了用于结构光三维视觉检测的RBF网络模型.与常规方法相比,该方法不需要考虑视觉模型误差、光学调整误差等因素对视觉检测系统测量精度的影响,因而能够有效的克服常规建模方法的不足,保证了检测系统具有较高的精度.

关 键 词:视觉  三维  神经网络  结构光  样本  训练和测试
文章编号:1001-5965(2002)03-0265-04
收稿时间:2000-08-04
修稿时间:2000-08-04

Method for Structured Light Based 3D Vision Inspection Based on RBF Neural Network
LI Xin,ZHANG Guang-jun,WEI Zhen-zhong. Method for Structured Light Based 3D Vision Inspection Based on RBF Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3): 265-268. DOI: 10.3969/j.issn.1001-5965.2002.03.005
Authors:LI Xin  ZHANG Guang-jun  WEI Zhen-zhong
Affiliation:Beijing University of Aeronautics and Astronautics, School of Automation Science and Electrical Engineering
Abstract:Based on Radial Based Function (RBF) neural network, a method for structured light based 3D vision inspection is presented. The method uses RBF ANN (Artificial Neural Network) to establish the mapping relationship between a real object in the wold and its image captured by CCD camera, i.e., the mapping relationship between frame coodinate and its image coodinate. Compared with common methods, the preset approach ignores the vision model error, and allow the existence of optical adjust error. By overcoming disadvantages of common methods efficiently, higher measuring accuracy can be obtain.
Keywords:vision  three dimension  neural networks  structured light  sample  training and testing
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号