首页 | 本学科首页   官方微博 | 高级检索  
     

具时滞的联想记忆神经网络模型动力学性质
引用本文:李秀玲. 具时滞的联想记忆神经网络模型动力学性质[J]. 北京航空航天大学学报, 2013, 39(3): 371-375
作者姓名:李秀玲
作者单位:吉林财经大学应用数学学院,长春,130117
基金项目:国家自然科学基金资助项目
摘    要:为了研究时滞对联想记忆神经网络模型动力学行为的影响,考虑了一个含有n+1个神经元的具多时滞的双向联想记忆神经网络模型.以模型中的时滞为参数,利用泛函微分方程的全局Hopf分支存在定理和常微分方程的Bendixson周期解不存在定理,给出该模型非平凡周期解全局存在的充分条件,为双向联想记忆神经网络的设计和应用提供了重要的理论依据.最后利用一个例子进行了数值仿真,仿真结果表明了结论的有效性.

关 键 词:双向联想记忆神经网络  时滞  周期解  动力学性质
收稿时间:2012-03-19

Dynamical quality in bidirectional associative memory neural network model
Li Xiuling. Dynamical quality in bidirectional associative memory neural network model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 371-375
Authors:Li Xiuling
Affiliation:College of Applied Mathematics, Jilin University of Finance and Economics, Changchun 130117, China
Abstract:In order to study for the effect of delay in dynamic behavior of associative memory neural network model, an n+1-dimensional bidirectional associative memory (BAM) neural network model with multi-delay was considered. Sufficient conditions for nontrivial periodic solution were met by the model by taking delay as a parameter, using the global Hopf bifurcation existence theorem of the functional differential equation and the Bendixson non-existent theorem of the ordinary differential equation. These provide important theoretical basis for the design and application of BAM neural network. Finally, numerical simulations were carried out and results show that the proposed conclusion is effective.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号