首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织与LVQ神经网络的足球机器人协作策略学习
引用本文:胡明慧 陈震 黎明. 基于自组织与LVQ神经网络的足球机器人协作策略学习[J]. 南昌航空工业学院学报, 2004, 18(3): 16-20
作者姓名:胡明慧 陈震 黎明
作者单位:南昌航空工业学院人工智能和图像处理研究中心,江西,南昌,330034;南昌航空工业学院人工智能和图像处理研究中心,江西,南昌,330034;南昌航空工业学院人工智能和图像处理研究中心,江西,南昌,330034
摘    要:足球机器人系统目前已成为人工智能应用技术研究的重要实验平台,系统的核心部分就是决策子系统。本文主要研究机器人足球比赛中协作策略的学习问题,采用了自组织与学习向量量化(LVQ)神经网络算法实现了两个足球机器人的传球学习。提出了一种协作策略学习的改进算法。该算法通过对网络权值矩阵进行改进,可以显著提高网络的训练质量。仿真和实验结果表明了该方法的可行性与有效性。

关 键 词:自组织与LVQ神经网络  足球机器人  协作策略  角色分配
文章编号:1001-4926(2004)03-0016-05
收稿时间:2004-09-15
修稿时间:2004-09-15

Coordination strategies learning of soccer robot based on self-organizing and LVQ NN
HU Ming-hui, CHEN Zhen, LI Ming. Coordination strategies learning of soccer robot based on self-organizing and LVQ NN[J]. Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition), 2004, 18(3): 16-20
Authors:HU Ming-hui   CHEN Zhen   LI Ming
Affiliation:The Center of Artificial Intelligence and Image Processing, Nanchang Institute of Aeronautical Technology, Nanchang, Jiangxi 330034
Abstract:Soccer-robot system now has been an important exp eriment platform for artificial intelligence application technology. The key point of the system is t he decision-making subsystem. This paper focuses on coordination strategies lea rning in robot soccer, s+elf-organizing and learning vector quantization neural networks. A new improved method of coordination strategies is presented in this paper. It is obvious to improve the quality of network training by reforming the NN weight-matrix. The result of simulation experiment indicates that the propo sed method is suitable and effective.
Keywords:Self-organizing and LVQ NN   Soccer robot   Coordination strategy   Role assignment
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号